Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200214769> ?p ?o ?g. }
- W4200214769 endingPage "4944" @default.
- W4200214769 startingPage "4944" @default.
- W4200214769 abstract "It is estimated that, in the Brazilian Amazon, forest degradation contributes three times more than deforestation for the loss of gross above-ground biomass. Degradation, in particular those caused by selective logging, result in features whose detection is a challenge to remote sensing, due to its size, space configuration, and geographical distribution. From the available remote sensing technologies, SAR data allow monitoring even during adverse atmospheric conditions. The aim of this study was to test different pre-trained models of Convolutional Neural Networks (CNNs) for change detection associated with forest degradation in bitemporal products obtained from a pair of SAR COSMO-SkyMed images acquired before and after logging in the Jamari National Forest. This area contains areas of legal and illegal logging, and to test the influence of the speckle effect on the result of this classification by applying the classification methodology on previously filtered and unfiltered images, comparing the results. A method of cluster detections was also presented, based on density-based spatial clustering of applications with noise (DBSCAN), which would make it possible, for example, to guide inspection actions and allow the calculation of the intensity of exploitation (IEX). Although the differences between the tested models were in the order of less than 5%, the tests on the RGB composition (where R = coefficient of variation; G = minimum values; and B = gradient) presented a slightly better performance compared to the others in terms of the number of correct classifications for selective logging, in particular using the model Painters (accuracy = 92%) even in the generalization tests, which presented an overall accuracy of 87%, and in the test on RGB from the unfiltered image pair (accuracy of 90%). These results indicate that multitemporal X-band SAR data have the potential for monitoring selective logging in tropical forests, especially in combination with CNN techniques." @default.
- W4200214769 created "2021-12-31" @default.
- W4200214769 creator A5000091763 @default.
- W4200214769 creator A5003982857 @default.
- W4200214769 creator A5021537415 @default.
- W4200214769 creator A5022675896 @default.
- W4200214769 creator A5062888816 @default.
- W4200214769 creator A5089674566 @default.
- W4200214769 date "2021-12-05" @default.
- W4200214769 modified "2023-09-26" @default.
- W4200214769 title "Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks" @default.
- W4200214769 cites W1931910357 @default.
- W4200214769 cites W1964216933 @default.
- W4200214769 cites W1982355028 @default.
- W4200214769 cites W1988092524 @default.
- W4200214769 cites W2071935776 @default.
- W4200214769 cites W2085282193 @default.
- W4200214769 cites W2088201293 @default.
- W4200214769 cites W2112081648 @default.
- W4200214769 cites W2128033169 @default.
- W4200214769 cites W2138973222 @default.
- W4200214769 cites W2295813245 @default.
- W4200214769 cites W2480429758 @default.
- W4200214769 cites W2606811636 @default.
- W4200214769 cites W2606986252 @default.
- W4200214769 cites W2610761109 @default.
- W4200214769 cites W2618530766 @default.
- W4200214769 cites W2730472814 @default.
- W4200214769 cites W2741509607 @default.
- W4200214769 cites W2753964054 @default.
- W4200214769 cites W2775148801 @default.
- W4200214769 cites W2782750212 @default.
- W4200214769 cites W2793927960 @default.
- W4200214769 cites W2794463910 @default.
- W4200214769 cites W2804933989 @default.
- W4200214769 cites W2886438884 @default.
- W4200214769 cites W2894660140 @default.
- W4200214769 cites W2899856450 @default.
- W4200214769 cites W2903301943 @default.
- W4200214769 cites W2905609166 @default.
- W4200214769 cites W2905708425 @default.
- W4200214769 cites W2918277739 @default.
- W4200214769 cites W2931790542 @default.
- W4200214769 cites W2934044636 @default.
- W4200214769 cites W2948638562 @default.
- W4200214769 cites W2949930576 @default.
- W4200214769 cites W2969512696 @default.
- W4200214769 cites W3003568080 @default.
- W4200214769 cites W3004799420 @default.
- W4200214769 cites W3009844817 @default.
- W4200214769 cites W3011445381 @default.
- W4200214769 cites W3022140654 @default.
- W4200214769 cites W3027201985 @default.
- W4200214769 cites W3040070013 @default.
- W4200214769 cites W3047165924 @default.
- W4200214769 cites W3080155615 @default.
- W4200214769 cites W3085288603 @default.
- W4200214769 cites W3091877960 @default.
- W4200214769 cites W3107403224 @default.
- W4200214769 cites W3129815733 @default.
- W4200214769 cites W3159749449 @default.
- W4200214769 cites W3195556894 @default.
- W4200214769 cites W3196502562 @default.
- W4200214769 doi "https://doi.org/10.3390/rs13234944" @default.
- W4200214769 hasPublicationYear "2021" @default.
- W4200214769 type Work @default.
- W4200214769 citedByCount "3" @default.
- W4200214769 countsByYear W42002147692022 @default.
- W4200214769 countsByYear W42002147692023 @default.
- W4200214769 crossrefType "journal-article" @default.
- W4200214769 hasAuthorship W4200214769A5000091763 @default.
- W4200214769 hasAuthorship W4200214769A5003982857 @default.
- W4200214769 hasAuthorship W4200214769A5021537415 @default.
- W4200214769 hasAuthorship W4200214769A5022675896 @default.
- W4200214769 hasAuthorship W4200214769A5062888816 @default.
- W4200214769 hasAuthorship W4200214769A5089674566 @default.
- W4200214769 hasBestOaLocation W42002147691 @default.
- W4200214769 hasConcept C125620115 @default.
- W4200214769 hasConcept C146849305 @default.
- W4200214769 hasConcept C153180895 @default.
- W4200214769 hasConcept C154945302 @default.
- W4200214769 hasConcept C18903297 @default.
- W4200214769 hasConcept C205649164 @default.
- W4200214769 hasConcept C39432304 @default.
- W4200214769 hasConcept C41008148 @default.
- W4200214769 hasConcept C50644808 @default.
- W4200214769 hasConcept C535291247 @default.
- W4200214769 hasConcept C62649853 @default.
- W4200214769 hasConcept C81363708 @default.
- W4200214769 hasConcept C86803240 @default.
- W4200214769 hasConcept C97137747 @default.
- W4200214769 hasConceptScore W4200214769C125620115 @default.
- W4200214769 hasConceptScore W4200214769C146849305 @default.
- W4200214769 hasConceptScore W4200214769C153180895 @default.
- W4200214769 hasConceptScore W4200214769C154945302 @default.
- W4200214769 hasConceptScore W4200214769C18903297 @default.
- W4200214769 hasConceptScore W4200214769C205649164 @default.
- W4200214769 hasConceptScore W4200214769C39432304 @default.