Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200215312> ?p ?o ?g. }
- W4200215312 abstract "Background: Sepsis-associated acute kidney injury (AKI) is frequent in patients admitted to intensive care units (ICU) and may contribute to adverse short-term and long-term outcomes. Acute kidney disease (AKD) reflects the adverse events developing after AKI. We aimed to develop and validate machine learning models to predict the occurrence of AKD in patients with sepsis-associated AKI. Methods: Using clinical data from patients with sepsis in the ICU at Beijing Friendship Hospital (BFH), we studied whether the following three machine learning models could predict the occurrence of AKD using demographic, laboratory, and other related variables: Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), decision trees, and logistic regression. In addition, we externally validated the results in the Medical Information Mart for Intensive Care III (MIMIC III) database. The outcome was the diagnosis of AKD when defined as AKI prolonged for 7-90 days according to Acute Disease Quality Initiative-16. Results: In this study, 209 patients from BFH were included, with 55.5% of them diagnosed as having AKD. Furthermore, 509 patients were included from the MIMIC III database, of which 46.4% were diagnosed as having AKD. Applying machine learning could successfully achieve very high accuracy (RNN-LSTM AUROC = 1; decision trees AUROC = 0.954; logistic regression AUROC = 0.728), with RNN-LSTM showing the best results. Further analyses revealed that the change of non-renal Sequential Organ Failure Assessment (SOFA) score between the 1st day and 3rd day (Δnon-renal SOFA) is instrumental in predicting the occurrence of AKD. Conclusion: Our results showed that machine learning, particularly RNN-LSTM, can accurately predict AKD occurrence. In addition, Δ SOFAnon-renal plays an important role in predicting the occurrence of AKD." @default.
- W4200215312 created "2021-12-31" @default.
- W4200215312 creator A5053384951 @default.
- W4200215312 creator A5054449816 @default.
- W4200215312 creator A5074448585 @default.
- W4200215312 date "2021-12-10" @default.
- W4200215312 modified "2023-10-16" @default.
- W4200215312 title "Application of Machine Learning to Predict Acute Kidney Disease in Patients With Sepsis Associated Acute Kidney Injury" @default.
- W4200215312 cites W1503605645 @default.
- W4200215312 cites W1869842011 @default.
- W4200215312 cites W1994682257 @default.
- W4200215312 cites W2045030989 @default.
- W4200215312 cites W2100697007 @default.
- W4200215312 cites W2104487058 @default.
- W4200215312 cites W2135046866 @default.
- W4200215312 cites W2141559993 @default.
- W4200215312 cites W2149269520 @default.
- W4200215312 cites W2280404143 @default.
- W4200215312 cites W2396881363 @default.
- W4200215312 cites W2520697268 @default.
- W4200215312 cites W2591419591 @default.
- W4200215312 cites W2735071354 @default.
- W4200215312 cites W2782117851 @default.
- W4200215312 cites W2794715897 @default.
- W4200215312 cites W2797636288 @default.
- W4200215312 cites W2803716578 @default.
- W4200215312 cites W2900460035 @default.
- W4200215312 cites W2912689309 @default.
- W4200215312 cites W2914416972 @default.
- W4200215312 cites W2944030127 @default.
- W4200215312 cites W2946302516 @default.
- W4200215312 cites W2956083712 @default.
- W4200215312 cites W2985434449 @default.
- W4200215312 cites W3010892901 @default.
- W4200215312 cites W3012068175 @default.
- W4200215312 cites W3014317076 @default.
- W4200215312 cites W3032447687 @default.
- W4200215312 cites W3069970543 @default.
- W4200215312 cites W3089182342 @default.
- W4200215312 cites W3089762823 @default.
- W4200215312 cites W3138052395 @default.
- W4200215312 cites W3164766833 @default.
- W4200215312 cites W3165357106 @default.
- W4200215312 cites W3171646083 @default.
- W4200215312 cites W4297957988 @default.
- W4200215312 doi "https://doi.org/10.3389/fmed.2021.792974" @default.
- W4200215312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34957162" @default.
- W4200215312 hasPublicationYear "2021" @default.
- W4200215312 type Work @default.
- W4200215312 citedByCount "15" @default.
- W4200215312 countsByYear W42002153122022 @default.
- W4200215312 countsByYear W42002153122023 @default.
- W4200215312 crossrefType "journal-article" @default.
- W4200215312 hasAuthorship W4200215312A5053384951 @default.
- W4200215312 hasAuthorship W4200215312A5054449816 @default.
- W4200215312 hasAuthorship W4200215312A5074448585 @default.
- W4200215312 hasBestOaLocation W42002153121 @default.
- W4200215312 hasConcept C119857082 @default.
- W4200215312 hasConcept C126322002 @default.
- W4200215312 hasConcept C151956035 @default.
- W4200215312 hasConcept C177713679 @default.
- W4200215312 hasConcept C194828623 @default.
- W4200215312 hasConcept C197934379 @default.
- W4200215312 hasConcept C2778384902 @default.
- W4200215312 hasConcept C2778653478 @default.
- W4200215312 hasConcept C2779134260 @default.
- W4200215312 hasConcept C2779541074 @default.
- W4200215312 hasConcept C2780472472 @default.
- W4200215312 hasConcept C41008148 @default.
- W4200215312 hasConcept C71924100 @default.
- W4200215312 hasConceptScore W4200215312C119857082 @default.
- W4200215312 hasConceptScore W4200215312C126322002 @default.
- W4200215312 hasConceptScore W4200215312C151956035 @default.
- W4200215312 hasConceptScore W4200215312C177713679 @default.
- W4200215312 hasConceptScore W4200215312C194828623 @default.
- W4200215312 hasConceptScore W4200215312C197934379 @default.
- W4200215312 hasConceptScore W4200215312C2778384902 @default.
- W4200215312 hasConceptScore W4200215312C2778653478 @default.
- W4200215312 hasConceptScore W4200215312C2779134260 @default.
- W4200215312 hasConceptScore W4200215312C2779541074 @default.
- W4200215312 hasConceptScore W4200215312C2780472472 @default.
- W4200215312 hasConceptScore W4200215312C41008148 @default.
- W4200215312 hasConceptScore W4200215312C71924100 @default.
- W4200215312 hasLocation W42002153121 @default.
- W4200215312 hasLocation W42002153122 @default.
- W4200215312 hasLocation W42002153123 @default.
- W4200215312 hasLocation W42002153124 @default.
- W4200215312 hasOpenAccess W4200215312 @default.
- W4200215312 hasPrimaryLocation W42002153121 @default.
- W4200215312 hasRelatedWork W1966684529 @default.
- W4200215312 hasRelatedWork W2044780299 @default.
- W4200215312 hasRelatedWork W2110907763 @default.
- W4200215312 hasRelatedWork W2617679349 @default.
- W4200215312 hasRelatedWork W2765121668 @default.
- W4200215312 hasRelatedWork W2900068029 @default.
- W4200215312 hasRelatedWork W3120579756 @default.
- W4200215312 hasRelatedWork W3123050808 @default.
- W4200215312 hasRelatedWork W4214660345 @default.
- W4200215312 hasRelatedWork W4324130244 @default.
- W4200215312 hasVolume "8" @default.