Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200217368> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4200217368 abstract "Background: A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past twenty years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization. Results: In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution using k-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov-Stoogbauer-Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods. Conclusions: Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction - which combines CMIA, and the KSG-MI estimator - achieves an improvement of 20-35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or choose gene candidates for experimental validations." @default.
- W4200217368 created "2021-12-31" @default.
- W4200217368 creator A5003124534 @default.
- W4200217368 creator A5004108540 @default.
- W4200217368 creator A5029392337 @default.
- W4200217368 creator A5045471152 @default.
- W4200217368 date "2021-12-21" @default.
- W4200217368 modified "2023-10-16" @default.
- W4200217368 title "Gene regulation network inference using k-nearest neighbor-based mutual information estimation- Revisiting an old DREAM" @default.
- W4200217368 doi "https://doi.org/10.1101/2021.12.20.473242" @default.
- W4200217368 hasPublicationYear "2021" @default.
- W4200217368 type Work @default.
- W4200217368 citedByCount "0" @default.
- W4200217368 crossrefType "posted-content" @default.
- W4200217368 hasAuthorship W4200217368A5003124534 @default.
- W4200217368 hasAuthorship W4200217368A5004108540 @default.
- W4200217368 hasAuthorship W4200217368A5029392337 @default.
- W4200217368 hasAuthorship W4200217368A5045471152 @default.
- W4200217368 hasBestOaLocation W42002173681 @default.
- W4200217368 hasConcept C104317684 @default.
- W4200217368 hasConcept C105795698 @default.
- W4200217368 hasConcept C11413529 @default.
- W4200217368 hasConcept C119857082 @default.
- W4200217368 hasConcept C124101348 @default.
- W4200217368 hasConcept C150194340 @default.
- W4200217368 hasConcept C151730666 @default.
- W4200217368 hasConcept C152139883 @default.
- W4200217368 hasConcept C153180895 @default.
- W4200217368 hasConcept C154945302 @default.
- W4200217368 hasConcept C185429906 @default.
- W4200217368 hasConcept C2776214188 @default.
- W4200217368 hasConcept C2779343474 @default.
- W4200217368 hasConcept C33923547 @default.
- W4200217368 hasConcept C41008148 @default.
- W4200217368 hasConcept C55493867 @default.
- W4200217368 hasConcept C67339327 @default.
- W4200217368 hasConcept C86803240 @default.
- W4200217368 hasConceptScore W4200217368C104317684 @default.
- W4200217368 hasConceptScore W4200217368C105795698 @default.
- W4200217368 hasConceptScore W4200217368C11413529 @default.
- W4200217368 hasConceptScore W4200217368C119857082 @default.
- W4200217368 hasConceptScore W4200217368C124101348 @default.
- W4200217368 hasConceptScore W4200217368C150194340 @default.
- W4200217368 hasConceptScore W4200217368C151730666 @default.
- W4200217368 hasConceptScore W4200217368C152139883 @default.
- W4200217368 hasConceptScore W4200217368C153180895 @default.
- W4200217368 hasConceptScore W4200217368C154945302 @default.
- W4200217368 hasConceptScore W4200217368C185429906 @default.
- W4200217368 hasConceptScore W4200217368C2776214188 @default.
- W4200217368 hasConceptScore W4200217368C2779343474 @default.
- W4200217368 hasConceptScore W4200217368C33923547 @default.
- W4200217368 hasConceptScore W4200217368C41008148 @default.
- W4200217368 hasConceptScore W4200217368C55493867 @default.
- W4200217368 hasConceptScore W4200217368C67339327 @default.
- W4200217368 hasConceptScore W4200217368C86803240 @default.
- W4200217368 hasLocation W42002173681 @default.
- W4200217368 hasOpenAccess W4200217368 @default.
- W4200217368 hasPrimaryLocation W42002173681 @default.
- W4200217368 hasRelatedWork W1983871127 @default.
- W4200217368 hasRelatedWork W2078450879 @default.
- W4200217368 hasRelatedWork W2354756786 @default.
- W4200217368 hasRelatedWork W2511279186 @default.
- W4200217368 hasRelatedWork W2586478664 @default.
- W4200217368 hasRelatedWork W2610243316 @default.
- W4200217368 hasRelatedWork W2946101226 @default.
- W4200217368 hasRelatedWork W2963058055 @default.
- W4200217368 hasRelatedWork W4200067116 @default.
- W4200217368 hasRelatedWork W4311847342 @default.
- W4200217368 isParatext "false" @default.
- W4200217368 isRetracted "false" @default.
- W4200217368 workType "article" @default.