Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200218717> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4200218717 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> An improved cloud detection algorithm for the Aura Microwave Limb Sounder (MLS) is presented. This new algorithm is based on a feedforward artificial neural network and uses as input, for each MLS limb scan, a vector consisting of 1710 brightness temperatures provided by MLS observations from 15 different tangent altitudes and up to 13 spectral channels in each of 10 different MLS bands. The model has been trained on global cloud properties reported by Aqua's Moderate Resolution Imaging Spectroradiometer (MODIS). In total, the colocated MLSâMODIS data set consists of 162â117 combined scenes sampled on 208â<span class=inline-formula>d</span> over 2005â2020. A comparison to the current MLS cloudiness flag used in âLevel 2â processing reveals a huge improvement in classification performance. For previously unseen data, the algorithm successfully detects <span class=inline-formula>></span>â93â% of profiles affected by clouds, up from <span class=inline-formula>â¼</span>â16â% for the Level 2 flagging. At the same time, false positives reported for actually clear profiles are comparable to the Level 2 results. The classification performance is not dependent on geolocation but slightly decreases over low-cloud-cover regions. The new cloudiness flag is applied to determine average global cloud cover maps over 2015â2019, successfully reproducing the spatial patterns of mid-level to high clouds seen in MODIS data. It is also applied to four example cloud fields to illustrate its reliable performance for different cloud structures with varying degrees of complexity. Training a similar model on MODIS-retrieved cloud top pressure (<span class=inline-formula><i>p</i><sub>CT</sub></span>) yields reliable predictions with correlation coefficients <span class=inline-formula>></span>â0.82. It is shown that the model can correctly identify <span class=inline-formula>></span>â85â% of profiles with <span class=inline-formula><i>p</i><sub>CT</sub></span>â<span class=inline-formula><</span>â400â<span class=inline-formula>hPa</span>. Similar to the cloud classification model, global maps and example cloud fields are provided, which reveal good agreement with MODIS results. The combination of the cloudiness flag and predicted cloud top pressure provides the means to identify MLS profiles in the presence of high-reaching convection." @default.
- W4200218717 created "2021-12-31" @default.
- W4200218717 creator A5000420548 @default.
- W4200218717 date "2021-09-30" @default.
- W4200218717 modified "2023-10-03" @default.
- W4200218717 title "Reply on RC1" @default.
- W4200218717 doi "https://doi.org/10.5194/amt-2021-146-ac1" @default.
- W4200218717 hasPublicationYear "2021" @default.
- W4200218717 type Work @default.
- W4200218717 citedByCount "0" @default.
- W4200218717 crossrefType "peer-review" @default.
- W4200218717 hasAuthorship W4200218717A5000420548 @default.
- W4200218717 hasBestOaLocation W42002187171 @default.
- W4200218717 hasConcept C111919701 @default.
- W4200218717 hasConcept C11413529 @default.
- W4200218717 hasConcept C120665830 @default.
- W4200218717 hasConcept C121332964 @default.
- W4200218717 hasConcept C125245961 @default.
- W4200218717 hasConcept C127413603 @default.
- W4200218717 hasConcept C1276947 @default.
- W4200218717 hasConcept C147176958 @default.
- W4200218717 hasConcept C153294291 @default.
- W4200218717 hasConcept C154945302 @default.
- W4200218717 hasConcept C19269812 @default.
- W4200218717 hasConcept C205649164 @default.
- W4200218717 hasConcept C206887242 @default.
- W4200218717 hasConcept C2777007095 @default.
- W4200218717 hasConcept C2778753569 @default.
- W4200218717 hasConcept C33923547 @default.
- W4200218717 hasConcept C41008148 @default.
- W4200218717 hasConcept C53802167 @default.
- W4200218717 hasConcept C62649853 @default.
- W4200218717 hasConcept C79974875 @default.
- W4200218717 hasConceptScore W4200218717C111919701 @default.
- W4200218717 hasConceptScore W4200218717C11413529 @default.
- W4200218717 hasConceptScore W4200218717C120665830 @default.
- W4200218717 hasConceptScore W4200218717C121332964 @default.
- W4200218717 hasConceptScore W4200218717C125245961 @default.
- W4200218717 hasConceptScore W4200218717C127413603 @default.
- W4200218717 hasConceptScore W4200218717C1276947 @default.
- W4200218717 hasConceptScore W4200218717C147176958 @default.
- W4200218717 hasConceptScore W4200218717C153294291 @default.
- W4200218717 hasConceptScore W4200218717C154945302 @default.
- W4200218717 hasConceptScore W4200218717C19269812 @default.
- W4200218717 hasConceptScore W4200218717C205649164 @default.
- W4200218717 hasConceptScore W4200218717C206887242 @default.
- W4200218717 hasConceptScore W4200218717C2777007095 @default.
- W4200218717 hasConceptScore W4200218717C2778753569 @default.
- W4200218717 hasConceptScore W4200218717C33923547 @default.
- W4200218717 hasConceptScore W4200218717C41008148 @default.
- W4200218717 hasConceptScore W4200218717C53802167 @default.
- W4200218717 hasConceptScore W4200218717C62649853 @default.
- W4200218717 hasConceptScore W4200218717C79974875 @default.
- W4200218717 hasLocation W42002187171 @default.
- W4200218717 hasOpenAccess W4200218717 @default.
- W4200218717 hasPrimaryLocation W42002187171 @default.
- W4200218717 hasRelatedWork W1481808765 @default.
- W4200218717 hasRelatedWork W1967242460 @default.
- W4200218717 hasRelatedWork W2039626683 @default.
- W4200218717 hasRelatedWork W2136733998 @default.
- W4200218717 hasRelatedWork W2515354970 @default.
- W4200218717 hasRelatedWork W2741027229 @default.
- W4200218717 hasRelatedWork W2750948972 @default.
- W4200218717 hasRelatedWork W2804805087 @default.
- W4200218717 hasRelatedWork W3001238613 @default.
- W4200218717 hasRelatedWork W3148141711 @default.
- W4200218717 isParatext "false" @default.
- W4200218717 isRetracted "false" @default.
- W4200218717 workType "peer-review" @default.