Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200220722> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4200220722 abstract "Bangla Handwritten Digit recognition is a significant step forward in the development of Bangla OCR. However, intricate shape, structural likeness and distinctive composition style of Bangla digits makes it relatively challenging to distinguish. Thus, in this paper, we benchmarked four rigorous classifiers to recognize Bangla Handwritten Digit: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Gradient-Boosted Decision Trees (GBDT) based on three handcrafted feature extraction techniques: Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP), and Gabor filter on four publicly available Bangla handwriting digits datasets: NumtaDB, CMARTdb, Ekush and BDRW. Here, handcrafted feature extraction methods are used to extract features from the dataset image, which are then utilized to train machine learning classifiers to identify Bangla handwritten digits. We further fine-tuned the hyperparameters of the classification algorithms in order to acquire the finest Bangla handwritten digits recognition performance from these algorithms, and among all the models we employed, the HOG features combined with SVM model (HOG+SVM) attained the best performance metrics across all datasets. The recognition accuracy of the HOG+SVM method on the NumtaDB, CMARTdb, Ekush and BDRW datasets reached 93.32%, 98.08%, 95.68% and 89.68%, respectively as well as we compared the model performance with recent state-of-art methods." @default.
- W4200220722 created "2021-12-31" @default.
- W4200220722 creator A5006491727 @default.
- W4200220722 creator A5040850639 @default.
- W4200220722 creator A5050202324 @default.
- W4200220722 date "2021-09-14" @default.
- W4200220722 modified "2023-09-23" @default.
- W4200220722 title "A Classical Approach to Handcrafted Feature Extraction Techniques for Bangla Handwritten Digit Recognition" @default.
- W4200220722 cites W1932436738 @default.
- W4200220722 cites W2050953139 @default.
- W4200220722 cites W2588103282 @default.
- W4200220722 cites W2785706953 @default.
- W4200220722 cites W2893503762 @default.
- W4200220722 cites W2954964393 @default.
- W4200220722 cites W2956230918 @default.
- W4200220722 cites W3007591845 @default.
- W4200220722 doi "https://doi.org/10.1109/icecit54077.2021.9641406" @default.
- W4200220722 hasPublicationYear "2021" @default.
- W4200220722 type Work @default.
- W4200220722 citedByCount "4" @default.
- W4200220722 countsByYear W42002207222022 @default.
- W4200220722 countsByYear W42002207222023 @default.
- W4200220722 crossrefType "proceedings-article" @default.
- W4200220722 hasAuthorship W4200220722A5006491727 @default.
- W4200220722 hasAuthorship W4200220722A5040850639 @default.
- W4200220722 hasAuthorship W4200220722A5050202324 @default.
- W4200220722 hasBestOaLocation W42002207222 @default.
- W4200220722 hasConcept C112640561 @default.
- W4200220722 hasConcept C115961682 @default.
- W4200220722 hasConcept C12267149 @default.
- W4200220722 hasConcept C138885662 @default.
- W4200220722 hasConcept C153180895 @default.
- W4200220722 hasConcept C154945302 @default.
- W4200220722 hasConcept C169258074 @default.
- W4200220722 hasConcept C17426736 @default.
- W4200220722 hasConcept C19235068 @default.
- W4200220722 hasConcept C2776401178 @default.
- W4200220722 hasConcept C2779386606 @default.
- W4200220722 hasConcept C28490314 @default.
- W4200220722 hasConcept C2984784707 @default.
- W4200220722 hasConcept C41008148 @default.
- W4200220722 hasConcept C41895202 @default.
- W4200220722 hasConcept C50644808 @default.
- W4200220722 hasConcept C52622490 @default.
- W4200220722 hasConcept C53533937 @default.
- W4200220722 hasConceptScore W4200220722C112640561 @default.
- W4200220722 hasConceptScore W4200220722C115961682 @default.
- W4200220722 hasConceptScore W4200220722C12267149 @default.
- W4200220722 hasConceptScore W4200220722C138885662 @default.
- W4200220722 hasConceptScore W4200220722C153180895 @default.
- W4200220722 hasConceptScore W4200220722C154945302 @default.
- W4200220722 hasConceptScore W4200220722C169258074 @default.
- W4200220722 hasConceptScore W4200220722C17426736 @default.
- W4200220722 hasConceptScore W4200220722C19235068 @default.
- W4200220722 hasConceptScore W4200220722C2776401178 @default.
- W4200220722 hasConceptScore W4200220722C2779386606 @default.
- W4200220722 hasConceptScore W4200220722C28490314 @default.
- W4200220722 hasConceptScore W4200220722C2984784707 @default.
- W4200220722 hasConceptScore W4200220722C41008148 @default.
- W4200220722 hasConceptScore W4200220722C41895202 @default.
- W4200220722 hasConceptScore W4200220722C50644808 @default.
- W4200220722 hasConceptScore W4200220722C52622490 @default.
- W4200220722 hasConceptScore W4200220722C53533937 @default.
- W4200220722 hasLocation W42002207221 @default.
- W4200220722 hasLocation W42002207222 @default.
- W4200220722 hasOpenAccess W4200220722 @default.
- W4200220722 hasPrimaryLocation W42002207221 @default.
- W4200220722 hasRelatedWork W2087874231 @default.
- W4200220722 hasRelatedWork W2363530787 @default.
- W4200220722 hasRelatedWork W2550539038 @default.
- W4200220722 hasRelatedWork W2999548501 @default.
- W4200220722 hasRelatedWork W3004377704 @default.
- W4200220722 hasRelatedWork W3096162641 @default.
- W4200220722 hasRelatedWork W3101572448 @default.
- W4200220722 hasRelatedWork W4200220722 @default.
- W4200220722 hasRelatedWork W4285815611 @default.
- W4200220722 hasRelatedWork W2136567439 @default.
- W4200220722 isParatext "false" @default.
- W4200220722 isRetracted "false" @default.
- W4200220722 workType "article" @default.