Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200224601> ?p ?o ?g. }
- W4200224601 abstract "ABSTRACT Mean-field theory of spiking neuronal networks has led to numerous advances in our analytical and intuitive understanding of the dynamics of neuronal network models during the past decades. But, the elaborate nature of many of the developed methods, as well as the difficulty of implementing them, may limit the wider neuroscientific community from taking maximal advantage of these tools. In order to make them more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the widely used leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations on high performance systems. In this article we describe how the toolbox is implemented, show how it is used to calculate neuronal network properties, and discuss different use-cases, such as extraction of network mechanisms, parameter space exploration, or hybrid modeling approaches. Although the initial version of the toolbox focuses on methods that are close to our own past and present research, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis and we discuss how interested scientists can share their own methods via this platform." @default.
- W4200224601 created "2021-12-31" @default.
- W4200224601 creator A5023067325 @default.
- W4200224601 creator A5032616213 @default.
- W4200224601 creator A5043702982 @default.
- W4200224601 creator A5057070284 @default.
- W4200224601 creator A5059134038 @default.
- W4200224601 creator A5089214862 @default.
- W4200224601 date "2021-12-16" @default.
- W4200224601 modified "2023-09-27" @default.
- W4200224601 title "A mean-field toolbox for spiking neuronal network model analysis" @default.
- W4200224601 cites W1560391863 @default.
- W4200224601 cites W1576838367 @default.
- W4200224601 cites W1582051163 @default.
- W4200224601 cites W1599549671 @default.
- W4200224601 cites W1603661052 @default.
- W4200224601 cites W1968086082 @default.
- W4200224601 cites W1981308766 @default.
- W4200224601 cites W1988381993 @default.
- W4200224601 cites W1992476998 @default.
- W4200224601 cites W2006123057 @default.
- W4200224601 cites W2008284899 @default.
- W4200224601 cites W2013155738 @default.
- W4200224601 cites W2014302431 @default.
- W4200224601 cites W2014501117 @default.
- W4200224601 cites W2016354087 @default.
- W4200224601 cites W2018176917 @default.
- W4200224601 cites W2019306960 @default.
- W4200224601 cites W2027037510 @default.
- W4200224601 cites W2027802883 @default.
- W4200224601 cites W2029374903 @default.
- W4200224601 cites W2032407678 @default.
- W4200224601 cites W2033710332 @default.
- W4200224601 cites W2035645686 @default.
- W4200224601 cites W2041444821 @default.
- W4200224601 cites W2046873954 @default.
- W4200224601 cites W2050840442 @default.
- W4200224601 cites W2054296371 @default.
- W4200224601 cites W2054371931 @default.
- W4200224601 cites W2063582946 @default.
- W4200224601 cites W2066544338 @default.
- W4200224601 cites W2068728923 @default.
- W4200224601 cites W2075094474 @default.
- W4200224601 cites W2077519759 @default.
- W4200224601 cites W2093616568 @default.
- W4200224601 cites W2094225088 @default.
- W4200224601 cites W2094930158 @default.
- W4200224601 cites W2102952547 @default.
- W4200224601 cites W2106529987 @default.
- W4200224601 cites W2106566258 @default.
- W4200224601 cites W2109159419 @default.
- W4200224601 cites W2113345172 @default.
- W4200224601 cites W2121881348 @default.
- W4200224601 cites W2122211241 @default.
- W4200224601 cites W2134055773 @default.
- W4200224601 cites W2141166794 @default.
- W4200224601 cites W2151176499 @default.
- W4200224601 cites W2153113253 @default.
- W4200224601 cites W2153201079 @default.
- W4200224601 cites W2156432573 @default.
- W4200224601 cites W2158424806 @default.
- W4200224601 cites W2162515722 @default.
- W4200224601 cites W2233751308 @default.
- W4200224601 cites W2271336811 @default.
- W4200224601 cites W2331219843 @default.
- W4200224601 cites W2535290152 @default.
- W4200224601 cites W2545883516 @default.
- W4200224601 cites W2547783202 @default.
- W4200224601 cites W2770344141 @default.
- W4200224601 cites W2801498385 @default.
- W4200224601 cites W2904565241 @default.
- W4200224601 cites W2906281689 @default.
- W4200224601 cites W2945174113 @default.
- W4200224601 cites W2976505643 @default.
- W4200224601 cites W2979308375 @default.
- W4200224601 cites W3022709937 @default.
- W4200224601 cites W3025169958 @default.
- W4200224601 cites W3087441201 @default.
- W4200224601 cites W3099224472 @default.
- W4200224601 cites W3099878876 @default.
- W4200224601 cites W3100077639 @default.
- W4200224601 cites W3103145119 @default.
- W4200224601 cites W3103282891 @default.
- W4200224601 cites W3129730378 @default.
- W4200224601 cites W3135167518 @default.
- W4200224601 cites W3147919432 @default.
- W4200224601 cites W3164891634 @default.
- W4200224601 cites W4231081240 @default.
- W4200224601 cites W4233214253 @default.
- W4200224601 doi "https://doi.org/10.1101/2021.12.14.472584" @default.
- W4200224601 hasPublicationYear "2021" @default.
- W4200224601 type Work @default.
- W4200224601 citedByCount "0" @default.
- W4200224601 crossrefType "posted-content" @default.
- W4200224601 hasAuthorship W4200224601A5023067325 @default.
- W4200224601 hasAuthorship W4200224601A5032616213 @default.
- W4200224601 hasAuthorship W4200224601A5043702982 @default.
- W4200224601 hasAuthorship W4200224601A5057070284 @default.
- W4200224601 hasAuthorship W4200224601A5059134038 @default.
- W4200224601 hasAuthorship W4200224601A5089214862 @default.