Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200224614> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4200224614 endingPage "1456" @default.
- W4200224614 startingPage "1448" @default.
- W4200224614 abstract "As a new type of vehicle auxiliary braking device, permanent magnet eddy current retarder has a wide application prospect. In this paper, the linear layer analysis method and non-dominated sorting genetic algorithm-II (NSGA-II) are combined to optimize the parameters of permanent magnet eddy current retarder. Firstly, based on the linear layer model, the mathematical optimization model of permanent magnet eddy current retarder is established by taking the radial length of permanent magnet, the thickness of permanent magnet, the number of permanent magnets and the thickness of conductor disk as design variables, the braking torque and eddy current loss as optimization objectives. Secondly, the NSGA-II algorithm is used to optimize the braking torque and eddy current loss of the permanent magnet eddy current retarder. Finally, the performance of the permanent magnet eddy current retarder after the optimization of the structural parameters is carried out by using ANSYS software to verify the accuracy and feasibility of the optimization results. The optimization algorithm used in this article solves the problem of poor adaptability to environmental changes and premature convergence in the late evolution of standard genetic algorithm. The results show that the NSGA-II algorithm based on the layer analysis model has better computational results in the optimal design of structural parameters than the standard genetic algorithm." @default.
- W4200224614 created "2021-12-31" @default.
- W4200224614 creator A5050474421 @default.
- W4200224614 creator A5064144886 @default.
- W4200224614 creator A5068952870 @default.
- W4200224614 date "2022-04-01" @default.
- W4200224614 modified "2023-10-18" @default.
- W4200224614 title "Multi-objective optimal design of permanent magnet eddy current retarder based on NSGA-II algorithm" @default.
- W4200224614 cites W2126105956 @default.
- W4200224614 cites W2138756650 @default.
- W4200224614 cites W2803577814 @default.
- W4200224614 doi "https://doi.org/10.1016/j.egyr.2021.11.165" @default.
- W4200224614 hasPublicationYear "2022" @default.
- W4200224614 type Work @default.
- W4200224614 citedByCount "5" @default.
- W4200224614 countsByYear W42002246142022 @default.
- W4200224614 countsByYear W42002246142023 @default.
- W4200224614 crossrefType "journal-article" @default.
- W4200224614 hasAuthorship W4200224614A5050474421 @default.
- W4200224614 hasAuthorship W4200224614A5064144886 @default.
- W4200224614 hasAuthorship W4200224614A5068952870 @default.
- W4200224614 hasBestOaLocation W42002246141 @default.
- W4200224614 hasConcept C11413529 @default.
- W4200224614 hasConcept C119599485 @default.
- W4200224614 hasConcept C119857082 @default.
- W4200224614 hasConcept C121332964 @default.
- W4200224614 hasConcept C127413603 @default.
- W4200224614 hasConcept C131357438 @default.
- W4200224614 hasConcept C144171764 @default.
- W4200224614 hasConcept C154945302 @default.
- W4200224614 hasConcept C16389437 @default.
- W4200224614 hasConcept C171146098 @default.
- W4200224614 hasConcept C186394612 @default.
- W4200224614 hasConcept C2775924081 @default.
- W4200224614 hasConcept C33107880 @default.
- W4200224614 hasConcept C41008148 @default.
- W4200224614 hasConcept C47446073 @default.
- W4200224614 hasConcept C54855816 @default.
- W4200224614 hasConcept C78519656 @default.
- W4200224614 hasConcept C8880873 @default.
- W4200224614 hasConcept C97355855 @default.
- W4200224614 hasConceptScore W4200224614C11413529 @default.
- W4200224614 hasConceptScore W4200224614C119599485 @default.
- W4200224614 hasConceptScore W4200224614C119857082 @default.
- W4200224614 hasConceptScore W4200224614C121332964 @default.
- W4200224614 hasConceptScore W4200224614C127413603 @default.
- W4200224614 hasConceptScore W4200224614C131357438 @default.
- W4200224614 hasConceptScore W4200224614C144171764 @default.
- W4200224614 hasConceptScore W4200224614C154945302 @default.
- W4200224614 hasConceptScore W4200224614C16389437 @default.
- W4200224614 hasConceptScore W4200224614C171146098 @default.
- W4200224614 hasConceptScore W4200224614C186394612 @default.
- W4200224614 hasConceptScore W4200224614C2775924081 @default.
- W4200224614 hasConceptScore W4200224614C33107880 @default.
- W4200224614 hasConceptScore W4200224614C41008148 @default.
- W4200224614 hasConceptScore W4200224614C47446073 @default.
- W4200224614 hasConceptScore W4200224614C54855816 @default.
- W4200224614 hasConceptScore W4200224614C78519656 @default.
- W4200224614 hasConceptScore W4200224614C8880873 @default.
- W4200224614 hasConceptScore W4200224614C97355855 @default.
- W4200224614 hasFunder F4320321001 @default.
- W4200224614 hasFunder F4320336601 @default.
- W4200224614 hasLocation W42002246141 @default.
- W4200224614 hasLocation W42002246142 @default.
- W4200224614 hasOpenAccess W4200224614 @default.
- W4200224614 hasPrimaryLocation W42002246141 @default.
- W4200224614 hasRelatedWork W1999887367 @default.
- W4200224614 hasRelatedWork W2110877056 @default.
- W4200224614 hasRelatedWork W2147838057 @default.
- W4200224614 hasRelatedWork W2156216140 @default.
- W4200224614 hasRelatedWork W2348715637 @default.
- W4200224614 hasRelatedWork W2354356586 @default.
- W4200224614 hasRelatedWork W2364525400 @default.
- W4200224614 hasRelatedWork W2392644482 @default.
- W4200224614 hasRelatedWork W3009502827 @default.
- W4200224614 hasRelatedWork W2589261612 @default.
- W4200224614 hasVolume "8" @default.
- W4200224614 isParatext "false" @default.
- W4200224614 isRetracted "false" @default.
- W4200224614 workType "article" @default.