Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200224689> ?p ?o ?g. }
- W4200224689 endingPage "8503" @default.
- W4200224689 startingPage "8503" @default.
- W4200224689 abstract "The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of millions of individuals and caused millions of deaths worldwide. Predicting the clinical course of the disease is of pivotal importance to manage patients. Several studies have found hematochemical alterations in COVID-19 patients, such as inflammatory markers. We retrospectively analyzed the anamnestic data and laboratory parameters of 303 patients diagnosed with COVID-19 who were admitted to the Polyclinic Hospital of Bari during the first phase of the COVID-19 global pandemic. After the pre-processing phase, we performed a survival analysis with Kaplan-Meier curves and Cox Regression, with the aim to discover the most unfavorable predictors. The target outcomes were mortality or admission to the intensive care unit (ICU). Different machine learning models were also compared to realize a robust classifier relying on a low number of strongly significant factors to estimate the risk of death or admission to ICU. From the survival analysis, it emerged that the most significant laboratory parameters for both outcomes was C-reactive protein min; HR=17.963 (95% CI 6.548-49.277, p < 0.001) for death, HR=1.789 (95% CI 1.000-3.200, p = 0.050) for admission to ICU. The second most important parameter was Erythrocytes max; HR=1.765 (95% CI 1.141-2.729, p < 0.05) for death, HR=1.481 (95% CI 0.895-2.452, p = 0.127) for admission to ICU. The best model for predicting the risk of death was the decision tree, which resulted in ROC-AUC of 89.66%, whereas the best model for predicting the admission to ICU was support vector machine, which had ROC-AUC of 95.07%. The hematochemical predictors identified in this study can be utilized as a strong prognostic signature to characterize the severity of the disease in COVID-19 patients." @default.
- W4200224689 created "2021-12-31" @default.
- W4200224689 creator A5002354886 @default.
- W4200224689 creator A5007784690 @default.
- W4200224689 creator A5010391595 @default.
- W4200224689 creator A5010414962 @default.
- W4200224689 creator A5017080831 @default.
- W4200224689 creator A5028894579 @default.
- W4200224689 creator A5031052127 @default.
- W4200224689 creator A5040155298 @default.
- W4200224689 creator A5050013557 @default.
- W4200224689 creator A5050946965 @default.
- W4200224689 creator A5058199035 @default.
- W4200224689 creator A5058629014 @default.
- W4200224689 creator A5059086195 @default.
- W4200224689 creator A5065729834 @default.
- W4200224689 creator A5069106701 @default.
- W4200224689 creator A5075998500 @default.
- W4200224689 creator A5081103796 @default.
- W4200224689 creator A5081281097 @default.
- W4200224689 date "2021-12-20" @default.
- W4200224689 modified "2023-10-01" @default.
- W4200224689 title "Predictive Machine Learning Models and Survival Analysis for COVID-19 Prognosis Based on Hematochemical Parameters" @default.
- W4200224689 cites W1970975485 @default.
- W4200224689 cites W1995806857 @default.
- W4200224689 cites W2012076348 @default.
- W4200224689 cites W2016589492 @default.
- W4200224689 cites W2020712165 @default.
- W4200224689 cites W2064675550 @default.
- W4200224689 cites W2096863518 @default.
- W4200224689 cites W2181725657 @default.
- W4200224689 cites W2964010366 @default.
- W4200224689 cites W3009859788 @default.
- W4200224689 cites W3010945647 @default.
- W4200224689 cites W3014231150 @default.
- W4200224689 cites W3014426942 @default.
- W4200224689 cites W3015552915 @default.
- W4200224689 cites W3015696390 @default.
- W4200224689 cites W3016419533 @default.
- W4200224689 cites W3025394897 @default.
- W4200224689 cites W3032658634 @default.
- W4200224689 cites W3037558495 @default.
- W4200224689 cites W3038780555 @default.
- W4200224689 cites W3039347467 @default.
- W4200224689 cites W3041809298 @default.
- W4200224689 cites W3041991860 @default.
- W4200224689 cites W3048007432 @default.
- W4200224689 cites W3052948254 @default.
- W4200224689 cites W3070973952 @default.
- W4200224689 cites W3080187318 @default.
- W4200224689 cites W3080462347 @default.
- W4200224689 cites W3084187717 @default.
- W4200224689 cites W3087049386 @default.
- W4200224689 cites W3090417605 @default.
- W4200224689 cites W3093068007 @default.
- W4200224689 cites W3099447401 @default.
- W4200224689 cites W3119044912 @default.
- W4200224689 cites W3119175057 @default.
- W4200224689 cites W3119851179 @default.
- W4200224689 cites W3120603422 @default.
- W4200224689 cites W3120923085 @default.
- W4200224689 cites W3120963590 @default.
- W4200224689 cites W3121263745 @default.
- W4200224689 cites W3128181980 @default.
- W4200224689 cites W3137135253 @default.
- W4200224689 cites W3140924497 @default.
- W4200224689 cites W3148681118 @default.
- W4200224689 cites W3152995108 @default.
- W4200224689 cites W3165656738 @default.
- W4200224689 cites W3197782790 @default.
- W4200224689 cites W3204647638 @default.
- W4200224689 cites W3207711392 @default.
- W4200224689 cites W3208239477 @default.
- W4200224689 cites W4200134527 @default.
- W4200224689 doi "https://doi.org/10.3390/s21248503" @default.
- W4200224689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34960595" @default.
- W4200224689 hasPublicationYear "2021" @default.
- W4200224689 type Work @default.
- W4200224689 citedByCount "7" @default.
- W4200224689 countsByYear W42002246892022 @default.
- W4200224689 countsByYear W42002246892023 @default.
- W4200224689 crossrefType "journal-article" @default.
- W4200224689 hasAuthorship W4200224689A5002354886 @default.
- W4200224689 hasAuthorship W4200224689A5007784690 @default.
- W4200224689 hasAuthorship W4200224689A5010391595 @default.
- W4200224689 hasAuthorship W4200224689A5010414962 @default.
- W4200224689 hasAuthorship W4200224689A5017080831 @default.
- W4200224689 hasAuthorship W4200224689A5028894579 @default.
- W4200224689 hasAuthorship W4200224689A5031052127 @default.
- W4200224689 hasAuthorship W4200224689A5040155298 @default.
- W4200224689 hasAuthorship W4200224689A5050013557 @default.
- W4200224689 hasAuthorship W4200224689A5050946965 @default.
- W4200224689 hasAuthorship W4200224689A5058199035 @default.
- W4200224689 hasAuthorship W4200224689A5058629014 @default.
- W4200224689 hasAuthorship W4200224689A5059086195 @default.
- W4200224689 hasAuthorship W4200224689A5065729834 @default.
- W4200224689 hasAuthorship W4200224689A5069106701 @default.
- W4200224689 hasAuthorship W4200224689A5075998500 @default.