Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200227928> ?p ?o ?g. }
- W4200227928 abstract "Abstract Detecting signals of selection from genomic data is a central problem in population genetics. Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and scalable deep-learning framework, we developed a novel method to detect and quantify positive selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN), SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations under a European human demographic model, and found that it performs as well or better as some of the best available methods, including state-of-the-art machine-learning and ARG-based methods. In addition, we used SIA to estimate selection coefficients at several loci associated with human phenotypes of interest. SIA detected novel signals of selection particular to the European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the genus Sporophila to quantify the strength of selection and improved the power of our previous methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and thereby provides new insight into how selective sweeps shape genomic diversity." @default.
- W4200227928 created "2021-12-31" @default.
- W4200227928 creator A5044642735 @default.
- W4200227928 creator A5049441688 @default.
- W4200227928 creator A5061240989 @default.
- W4200227928 creator A5071768695 @default.
- W4200227928 date "2021-11-22" @default.
- W4200227928 modified "2023-10-10" @default.
- W4200227928 title "A Deep-Learning Approach for Inference of Selective Sweeps from the Ancestral Recombination Graph" @default.
- W4200227928 cites W1546327739 @default.
- W4200227928 cites W1949974815 @default.
- W4200227928 cites W1964853169 @default.
- W4200227928 cites W1966650637 @default.
- W4200227928 cites W1976844911 @default.
- W4200227928 cites W1979900996 @default.
- W4200227928 cites W1980496331 @default.
- W4200227928 cites W1984324163 @default.
- W4200227928 cites W1984390786 @default.
- W4200227928 cites W1987754412 @default.
- W4200227928 cites W1991838121 @default.
- W4200227928 cites W1999771068 @default.
- W4200227928 cites W2017136882 @default.
- W4200227928 cites W2025253353 @default.
- W4200227928 cites W2026152438 @default.
- W4200227928 cites W2045107415 @default.
- W4200227928 cites W2046630500 @default.
- W4200227928 cites W2056574347 @default.
- W4200227928 cites W2064675550 @default.
- W4200227928 cites W2065386938 @default.
- W4200227928 cites W2067683493 @default.
- W4200227928 cites W2072362336 @default.
- W4200227928 cites W2078586457 @default.
- W4200227928 cites W2082967637 @default.
- W4200227928 cites W2089290332 @default.
- W4200227928 cites W2089772700 @default.
- W4200227928 cites W2095970568 @default.
- W4200227928 cites W2097660065 @default.
- W4200227928 cites W2104549677 @default.
- W4200227928 cites W2104770590 @default.
- W4200227928 cites W2123797367 @default.
- W4200227928 cites W2127864194 @default.
- W4200227928 cites W2130333286 @default.
- W4200227928 cites W2133429697 @default.
- W4200227928 cites W2134704754 @default.
- W4200227928 cites W2137221887 @default.
- W4200227928 cites W2137706757 @default.
- W4200227928 cites W2139162658 @default.
- W4200227928 cites W2140449543 @default.
- W4200227928 cites W2140784970 @default.
- W4200227928 cites W2145004732 @default.
- W4200227928 cites W2149943693 @default.
- W4200227928 cites W2151061572 @default.
- W4200227928 cites W2155108118 @default.
- W4200227928 cites W2156866331 @default.
- W4200227928 cites W2157149092 @default.
- W4200227928 cites W2160460000 @default.
- W4200227928 cites W2163031152 @default.
- W4200227928 cites W2169421412 @default.
- W4200227928 cites W2508517928 @default.
- W4200227928 cites W2530131241 @default.
- W4200227928 cites W2617614970 @default.
- W4200227928 cites W2783880833 @default.
- W4200227928 cites W2919115771 @default.
- W4200227928 cites W2949902438 @default.
- W4200227928 cites W2950327064 @default.
- W4200227928 cites W2950332142 @default.
- W4200227928 cites W2950732129 @default.
- W4200227928 cites W2970459958 @default.
- W4200227928 cites W2971662497 @default.
- W4200227928 cites W2972528716 @default.
- W4200227928 cites W2989915159 @default.
- W4200227928 cites W2998768917 @default.
- W4200227928 cites W3098158648 @default.
- W4200227928 cites W3098331729 @default.
- W4200227928 cites W3120004201 @default.
- W4200227928 cites W3137231908 @default.
- W4200227928 doi "https://doi.org/10.1093/molbev/msab332" @default.
- W4200227928 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34888675" @default.
- W4200227928 hasPublicationYear "2021" @default.
- W4200227928 type Work @default.
- W4200227928 citedByCount "15" @default.
- W4200227928 countsByYear W42002279282022 @default.
- W4200227928 countsByYear W42002279282023 @default.
- W4200227928 crossrefType "journal-article" @default.
- W4200227928 hasAuthorship W4200227928A5044642735 @default.
- W4200227928 hasAuthorship W4200227928A5049441688 @default.
- W4200227928 hasAuthorship W4200227928A5061240989 @default.
- W4200227928 hasAuthorship W4200227928A5071768695 @default.
- W4200227928 hasBestOaLocation W42002279281 @default.
- W4200227928 hasConcept C104317684 @default.
- W4200227928 hasConcept C108583219 @default.
- W4200227928 hasConcept C137848329 @default.
- W4200227928 hasConcept C144024400 @default.
- W4200227928 hasConcept C149923435 @default.
- W4200227928 hasConcept C153083717 @default.
- W4200227928 hasConcept C154945302 @default.
- W4200227928 hasConcept C156695909 @default.
- W4200227928 hasConcept C180754005 @default.
- W4200227928 hasConcept C2776214188 @default.
- W4200227928 hasConcept C2776620128 @default.