Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200229811> ?p ?o ?g. }
- W4200229811 endingPage "4039" @default.
- W4200229811 startingPage "4027" @default.
- W4200229811 abstract "Channel multipath components (MPCs) clustering and cluster characterization are the prerequisite for the development of cluster based channel models. This article investigates the MPCs clustering based on machine learning (ML) and analyzes the cluster characteristics in typical high-speed railway (HSR) scenarios. A variational Bayesian Gaussian mixture model (GMM)-based algorithm is introduced to achieve the space–time clustering of MPCs, which incorporates the statistical characteristics of MPCs and can automatically determine the optimum number of clusters. Moreover, a novel density-based validity index is proposed for evaluating the MPCs clustering performance. The proposed validity index improves the traditional index by considering the intracluster density, which can be calculated according to the Graham scanning method and Green’s formula. In addition to synthetic datasets, realistic MPCs datasets collected in an HSR obstructed viaduct scenario are used for the performance evaluation of the clustering algorithm and clustering validity index. Based on clustering results in the measured scenario, static cluster characteristics, including cluster number, intercluster and intracluster delay spreads (DSs) and angle spreads (ASs), and dynamic cluster characteristics such as cluster lifetime and birth and death property of clusters, are extracted and analyzed. These results will be useful for cluster-based channel modeling in future HSR mobile communication systems." @default.
- W4200229811 created "2021-12-31" @default.
- W4200229811 creator A5002989451 @default.
- W4200229811 creator A5011458272 @default.
- W4200229811 creator A5055483605 @default.
- W4200229811 creator A5087504521 @default.
- W4200229811 creator A5090482974 @default.
- W4200229811 date "2022-06-01" @default.
- W4200229811 modified "2023-10-16" @default.
- W4200229811 title "Machine Learning-Based Multipath Components Clustering and Cluster Characteristics Analysis in High-Speed Railway Scenarios" @default.
- W4200229811 cites W1653024839 @default.
- W4200229811 cites W1697154133 @default.
- W4200229811 cites W1977424544 @default.
- W4200229811 cites W1987971958 @default.
- W4200229811 cites W1998870192 @default.
- W4200229811 cites W2000721204 @default.
- W4200229811 cites W2025299767 @default.
- W4200229811 cites W2031495348 @default.
- W4200229811 cites W2037986567 @default.
- W4200229811 cites W2047143776 @default.
- W4200229811 cites W2051224630 @default.
- W4200229811 cites W2065042657 @default.
- W4200229811 cites W2085487226 @default.
- W4200229811 cites W2094354702 @default.
- W4200229811 cites W2113586398 @default.
- W4200229811 cites W2129066856 @default.
- W4200229811 cites W2133171768 @default.
- W4200229811 cites W2140089063 @default.
- W4200229811 cites W2161628826 @default.
- W4200229811 cites W2171267623 @default.
- W4200229811 cites W2171884936 @default.
- W4200229811 cites W2600156789 @default.
- W4200229811 cites W2748760676 @default.
- W4200229811 cites W2792088772 @default.
- W4200229811 cites W2805005199 @default.
- W4200229811 cites W2809060035 @default.
- W4200229811 cites W2892078410 @default.
- W4200229811 cites W2900965195 @default.
- W4200229811 cites W2925269947 @default.
- W4200229811 cites W3033789406 @default.
- W4200229811 cites W3036299681 @default.
- W4200229811 cites W3111648117 @default.
- W4200229811 cites W3116000233 @default.
- W4200229811 cites W3133631408 @default.
- W4200229811 doi "https://doi.org/10.1109/tap.2021.3137417" @default.
- W4200229811 hasPublicationYear "2022" @default.
- W4200229811 type Work @default.
- W4200229811 citedByCount "7" @default.
- W4200229811 countsByYear W42002298112022 @default.
- W4200229811 countsByYear W42002298112023 @default.
- W4200229811 crossrefType "journal-article" @default.
- W4200229811 hasAuthorship W4200229811A5002989451 @default.
- W4200229811 hasAuthorship W4200229811A5011458272 @default.
- W4200229811 hasAuthorship W4200229811A5055483605 @default.
- W4200229811 hasAuthorship W4200229811A5087504521 @default.
- W4200229811 hasAuthorship W4200229811A5090482974 @default.
- W4200229811 hasConcept C11413529 @default.
- W4200229811 hasConcept C115328559 @default.
- W4200229811 hasConcept C124101348 @default.
- W4200229811 hasConcept C127162648 @default.
- W4200229811 hasConcept C149872217 @default.
- W4200229811 hasConcept C153180895 @default.
- W4200229811 hasConcept C154945302 @default.
- W4200229811 hasConcept C161218011 @default.
- W4200229811 hasConcept C164866538 @default.
- W4200229811 hasConcept C199360897 @default.
- W4200229811 hasConcept C33704608 @default.
- W4200229811 hasConcept C41008148 @default.
- W4200229811 hasConcept C61224824 @default.
- W4200229811 hasConcept C73555534 @default.
- W4200229811 hasConcept C76155785 @default.
- W4200229811 hasConcept C94641424 @default.
- W4200229811 hasConceptScore W4200229811C11413529 @default.
- W4200229811 hasConceptScore W4200229811C115328559 @default.
- W4200229811 hasConceptScore W4200229811C124101348 @default.
- W4200229811 hasConceptScore W4200229811C127162648 @default.
- W4200229811 hasConceptScore W4200229811C149872217 @default.
- W4200229811 hasConceptScore W4200229811C153180895 @default.
- W4200229811 hasConceptScore W4200229811C154945302 @default.
- W4200229811 hasConceptScore W4200229811C161218011 @default.
- W4200229811 hasConceptScore W4200229811C164866538 @default.
- W4200229811 hasConceptScore W4200229811C199360897 @default.
- W4200229811 hasConceptScore W4200229811C33704608 @default.
- W4200229811 hasConceptScore W4200229811C41008148 @default.
- W4200229811 hasConceptScore W4200229811C61224824 @default.
- W4200229811 hasConceptScore W4200229811C73555534 @default.
- W4200229811 hasConceptScore W4200229811C76155785 @default.
- W4200229811 hasConceptScore W4200229811C94641424 @default.
- W4200229811 hasFunder F4320321001 @default.
- W4200229811 hasFunder F4320322919 @default.
- W4200229811 hasFunder F4320335777 @default.
- W4200229811 hasFunder F4320336270 @default.
- W4200229811 hasIssue "6" @default.
- W4200229811 hasLocation W42002298111 @default.
- W4200229811 hasOpenAccess W4200229811 @default.
- W4200229811 hasPrimaryLocation W42002298111 @default.
- W4200229811 hasRelatedWork W1963729455 @default.
- W4200229811 hasRelatedWork W2067418549 @default.