Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200234554> ?p ?o ?g. }
- W4200234554 endingPage "684" @default.
- W4200234554 startingPage "678" @default.
- W4200234554 abstract "Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US).First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules.Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, aspartate aminotransferase, alanine aminotransferase, platelet count, and albumin data) reached 96.30% and 0.994, respectively.Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool for the definitive diagnosis of liver tumors using B-mode US." @default.
- W4200234554 created "2021-12-31" @default.
- W4200234554 creator A5009985299 @default.
- W4200234554 creator A5033231895 @default.
- W4200234554 creator A5035476970 @default.
- W4200234554 creator A5041315725 @default.
- W4200234554 creator A5046522736 @default.
- W4200234554 creator A5060462446 @default.
- W4200234554 creator A5070058522 @default.
- W4200234554 creator A5073533097 @default.
- W4200234554 creator A5073692464 @default.
- W4200234554 creator A5074549541 @default.
- W4200234554 creator A5077327584 @default.
- W4200234554 creator A5077674030 @default.
- W4200234554 creator A5080654294 @default.
- W4200234554 creator A5083552213 @default.
- W4200234554 creator A5085971196 @default.
- W4200234554 creator A5087518933 @default.
- W4200234554 date "2022-01-12" @default.
- W4200234554 modified "2023-10-01" @default.
- W4200234554 title "Development of novel deep multimodal representation learning‐based model for the differentiation of liver tumors on B‐mode ultrasound images" @default.
- W4200234554 cites W1995149018 @default.
- W4200234554 cites W2007145799 @default.
- W4200234554 cites W2009575651 @default.
- W4200234554 cites W2012137391 @default.
- W4200234554 cites W2025212276 @default.
- W4200234554 cites W2035390078 @default.
- W4200234554 cites W2069816479 @default.
- W4200234554 cites W2088644721 @default.
- W4200234554 cites W2106989370 @default.
- W4200234554 cites W2108633159 @default.
- W4200234554 cites W2151287133 @default.
- W4200234554 cites W2163486683 @default.
- W4200234554 cites W2164777277 @default.
- W4200234554 cites W2168512435 @default.
- W4200234554 cites W2291115585 @default.
- W4200234554 cites W2328176404 @default.
- W4200234554 cites W2477643778 @default.
- W4200234554 cites W2480843 @default.
- W4200234554 cites W2557738935 @default.
- W4200234554 cites W2625856057 @default.
- W4200234554 cites W2735325603 @default.
- W4200234554 cites W2765571304 @default.
- W4200234554 cites W2887719255 @default.
- W4200234554 cites W2909556924 @default.
- W4200234554 cites W2954499361 @default.
- W4200234554 cites W2963246109 @default.
- W4200234554 cites W3013395723 @default.
- W4200234554 cites W3027067038 @default.
- W4200234554 cites W3029385555 @default.
- W4200234554 cites W3031818154 @default.
- W4200234554 cites W3032955657 @default.
- W4200234554 cites W3033108443 @default.
- W4200234554 cites W3135267215 @default.
- W4200234554 cites W3146306572 @default.
- W4200234554 cites W2789685905 @default.
- W4200234554 doi "https://doi.org/10.1111/jgh.15763" @default.
- W4200234554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34911147" @default.
- W4200234554 hasPublicationYear "2022" @default.
- W4200234554 type Work @default.
- W4200234554 citedByCount "8" @default.
- W4200234554 countsByYear W42002345542022 @default.
- W4200234554 countsByYear W42002345542023 @default.
- W4200234554 crossrefType "journal-article" @default.
- W4200234554 hasAuthorship W4200234554A5009985299 @default.
- W4200234554 hasAuthorship W4200234554A5033231895 @default.
- W4200234554 hasAuthorship W4200234554A5035476970 @default.
- W4200234554 hasAuthorship W4200234554A5041315725 @default.
- W4200234554 hasAuthorship W4200234554A5046522736 @default.
- W4200234554 hasAuthorship W4200234554A5060462446 @default.
- W4200234554 hasAuthorship W4200234554A5070058522 @default.
- W4200234554 hasAuthorship W4200234554A5073533097 @default.
- W4200234554 hasAuthorship W4200234554A5073692464 @default.
- W4200234554 hasAuthorship W4200234554A5074549541 @default.
- W4200234554 hasAuthorship W4200234554A5077327584 @default.
- W4200234554 hasAuthorship W4200234554A5077674030 @default.
- W4200234554 hasAuthorship W4200234554A5080654294 @default.
- W4200234554 hasAuthorship W4200234554A5083552213 @default.
- W4200234554 hasAuthorship W4200234554A5085971196 @default.
- W4200234554 hasAuthorship W4200234554A5087518933 @default.
- W4200234554 hasBestOaLocation W42002345542 @default.
- W4200234554 hasConcept C108583219 @default.
- W4200234554 hasConcept C126322002 @default.
- W4200234554 hasConcept C126838900 @default.
- W4200234554 hasConcept C142724271 @default.
- W4200234554 hasConcept C153180895 @default.
- W4200234554 hasConcept C154945302 @default.
- W4200234554 hasConcept C17744445 @default.
- W4200234554 hasConcept C199539241 @default.
- W4200234554 hasConcept C2776359362 @default.
- W4200234554 hasConcept C2776964913 @default.
- W4200234554 hasConcept C2778019345 @default.
- W4200234554 hasConcept C41008148 @default.
- W4200234554 hasConcept C4441509 @default.
- W4200234554 hasConcept C71924100 @default.
- W4200234554 hasConcept C81363708 @default.
- W4200234554 hasConcept C94625758 @default.
- W4200234554 hasConceptScore W4200234554C108583219 @default.