Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200245863> ?p ?o ?g. }
- W4200245863 endingPage "37" @default.
- W4200245863 startingPage "25" @default.
- W4200245863 abstract "Mapping the structure of forest vegetation with field surveys or high-resolution light detection and ranging (LiDAR) data is costly. We tested whether landscape topography and underlying geology could predict the vegetation density of a 19 km2 area of wet eucalypt forest at the Warra Long-Term Ecological Research Supersite, Tasmania, Australia. Using spatial layers for 12 topographic attributes derived from digital terrain models (DTMs) and a geology layer, we predicted the vegetation density of three strata with a high degree of accuracy (validation root mean square error ranged from 9.0% to 13.7%). The DTMs with 30 m resolution provided greater predictive accuracy than DTMs with higher resolution. The importance of different variables depended on spatial resolution and strata. Among the predictor variables, geology generally had the highest predictive importance, followed by solar radiation. Topographic Position Index, aspect, and System for Automated Geoscientific Analyses (SAGA) Wetness Index had moderate importance. This study demonstrates that geological and topographic attributes can provide useful predictions for the density of vegetation layers in a tall wet sclerophyll primary forest. Given the good performance of the model based on 30 m DTM resolution, the predictive power of the models could be tested on a larger geographical area using lower-density LiDAR point clouds combined with medium-resolution satellite data." @default.
- W4200245863 created "2021-12-31" @default.
- W4200245863 creator A5002905231 @default.
- W4200245863 creator A5062850904 @default.
- W4200245863 creator A5068775358 @default.
- W4200245863 creator A5087596951 @default.
- W4200245863 date "2021-12-14" @default.
- W4200245863 modified "2023-09-27" @default.
- W4200245863 title "Using topographic attributes to predict the density of vegetation layers in a wet eucalypt forest" @default.
- W4200245863 cites W1530451520 @default.
- W4200245863 cites W1968474682 @default.
- W4200245863 cites W1970023678 @default.
- W4200245863 cites W1973182806 @default.
- W4200245863 cites W1990082322 @default.
- W4200245863 cites W1992601594 @default.
- W4200245863 cites W2013188628 @default.
- W4200245863 cites W2025053342 @default.
- W4200245863 cites W2027442956 @default.
- W4200245863 cites W2047195451 @default.
- W4200245863 cites W2047830942 @default.
- W4200245863 cites W2049647840 @default.
- W4200245863 cites W2050359437 @default.
- W4200245863 cites W2051233190 @default.
- W4200245863 cites W2053869393 @default.
- W4200245863 cites W2055580833 @default.
- W4200245863 cites W2055726681 @default.
- W4200245863 cites W2070608504 @default.
- W4200245863 cites W2079622480 @default.
- W4200245863 cites W2084113824 @default.
- W4200245863 cites W2085756669 @default.
- W4200245863 cites W2108484081 @default.
- W4200245863 cites W2110613218 @default.
- W4200245863 cites W2116370011 @default.
- W4200245863 cites W2120365752 @default.
- W4200245863 cites W2123404971 @default.
- W4200245863 cites W2139086914 @default.
- W4200245863 cites W2145024060 @default.
- W4200245863 cites W2169536548 @default.
- W4200245863 cites W2174882701 @default.
- W4200245863 cites W2179206012 @default.
- W4200245863 cites W2188115011 @default.
- W4200245863 cites W2218616968 @default.
- W4200245863 cites W2288407699 @default.
- W4200245863 cites W2296685749 @default.
- W4200245863 cites W2299266285 @default.
- W4200245863 cites W2336133126 @default.
- W4200245863 cites W2484224907 @default.
- W4200245863 cites W2557117995 @default.
- W4200245863 cites W2585546872 @default.
- W4200245863 cites W2610412121 @default.
- W4200245863 cites W2760894977 @default.
- W4200245863 cites W2766007102 @default.
- W4200245863 cites W2766564189 @default.
- W4200245863 cites W2791554042 @default.
- W4200245863 cites W2793190356 @default.
- W4200245863 cites W2793602891 @default.
- W4200245863 cites W2801958376 @default.
- W4200245863 cites W2810927599 @default.
- W4200245863 cites W2886013788 @default.
- W4200245863 cites W2901294706 @default.
- W4200245863 cites W2910698308 @default.
- W4200245863 cites W2913003520 @default.
- W4200245863 cites W2922289309 @default.
- W4200245863 cites W2972547511 @default.
- W4200245863 cites W2991577183 @default.
- W4200245863 cites W3091838758 @default.
- W4200245863 cites W3094643344 @default.
- W4200245863 cites W3113345159 @default.
- W4200245863 cites W3114990289 @default.
- W4200245863 cites W3124954095 @default.
- W4200245863 cites W3199395078 @default.
- W4200245863 cites W4211056572 @default.
- W4200245863 cites W4212883601 @default.
- W4200245863 cites W4256060553 @default.
- W4200245863 cites W71894810 @default.
- W4200245863 doi "https://doi.org/10.1080/00049158.2021.2004687" @default.
- W4200245863 hasPublicationYear "2021" @default.
- W4200245863 type Work @default.
- W4200245863 citedByCount "1" @default.
- W4200245863 countsByYear W42002458632023 @default.
- W4200245863 crossrefType "journal-article" @default.
- W4200245863 hasAuthorship W4200245863A5002905231 @default.
- W4200245863 hasAuthorship W4200245863A5062850904 @default.
- W4200245863 hasAuthorship W4200245863A5068775358 @default.
- W4200245863 hasAuthorship W4200245863A5087596951 @default.
- W4200245863 hasConcept C100970517 @default.
- W4200245863 hasConcept C127313418 @default.
- W4200245863 hasConcept C139518226 @default.
- W4200245863 hasConcept C142724271 @default.
- W4200245863 hasConcept C161840515 @default.
- W4200245863 hasConcept C166957645 @default.
- W4200245863 hasConcept C181843262 @default.
- W4200245863 hasConcept C205649164 @default.
- W4200245863 hasConcept C2524010 @default.
- W4200245863 hasConcept C2776133958 @default.
- W4200245863 hasConcept C2776898743 @default.
- W4200245863 hasConcept C33923547 @default.
- W4200245863 hasConcept C37054046 @default.