Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200260440> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4200260440 endingPage "11957" @default.
- W4200260440 startingPage "11957" @default.
- W4200260440 abstract "The application of Artificial Intelligence to the industrial world and its appliances has recently grown in popularity. Indeed, AI techniques are now becoming the de-facto technology for the resolution of complex tasks concerning computer vision, natural language processing and many other areas. In the last years, most of the the research community efforts have focused on increasing the performance of most common AI techniques—e.g., Neural Networks, etc.—at the expenses of their complexity. Indeed, many works in the AI field identify and propose hyper-efficient techniques, targeting high-end devices. However, the application of such AI techniques to devices and appliances which are characterised by limited computational capabilities, remains an open research issue. In the industrial world, this problem heavily targets low-end appliances, which are developed focusing on saving costs and relying on—computationally—constrained components. While some efforts have been made in this area through the proposal of AI-simplification and AI-compression techniques, it is still relevant to study which available AI techniques can be used in modern constrained devices. Therefore, in this paper we propose a load classification task as a case study to analyse which state-of-the-art NN solutions can be embedded successfully into constrained industrial devices. The presented case study is tested on a simple microcontroller, characterised by very poor computational performances—i.e., FLOPS –, to mirror faithfully the design process of low-end appliances. A handful of NN models are tested, showing positive outcomes and possible limitations, and highlighting the complexity of AI embedding." @default.
- W4200260440 created "2021-12-31" @default.
- W4200260440 creator A5053171685 @default.
- W4200260440 creator A5082586707 @default.
- W4200260440 date "2021-12-15" @default.
- W4200260440 modified "2023-09-30" @default.
- W4200260440 title "Load Classification: A Case Study for Applying Neural Networks in Hyper-Constrained Embedded Devices" @default.
- W4200260440 cites W12634471 @default.
- W4200260440 cites W1861492603 @default.
- W4200260440 cites W2031489346 @default.
- W4200260440 cites W2108598243 @default.
- W4200260440 cites W2134295053 @default.
- W4200260440 cites W2166049352 @default.
- W4200260440 cites W2183341477 @default.
- W4200260440 cites W2194775991 @default.
- W4200260440 cites W2531409750 @default.
- W4200260440 cites W2734358244 @default.
- W4200260440 cites W2770736290 @default.
- W4200260440 cites W2791879367 @default.
- W4200260440 cites W2798371872 @default.
- W4200260440 cites W2885527679 @default.
- W4200260440 cites W2957927798 @default.
- W4200260440 cites W2963446712 @default.
- W4200260440 cites W2988916019 @default.
- W4200260440 cites W2998213123 @default.
- W4200260440 cites W3006575403 @default.
- W4200260440 cites W3018997134 @default.
- W4200260440 cites W3019166713 @default.
- W4200260440 cites W3019437576 @default.
- W4200260440 cites W3034971973 @default.
- W4200260440 cites W3046289513 @default.
- W4200260440 cites W3100732527 @default.
- W4200260440 cites W3106250896 @default.
- W4200260440 cites W3169052370 @default.
- W4200260440 cites W3191321386 @default.
- W4200260440 doi "https://doi.org/10.3390/app112411957" @default.
- W4200260440 hasPublicationYear "2021" @default.
- W4200260440 type Work @default.
- W4200260440 citedByCount "3" @default.
- W4200260440 countsByYear W42002604402022 @default.
- W4200260440 countsByYear W42002604402023 @default.
- W4200260440 crossrefType "journal-article" @default.
- W4200260440 hasAuthorship W4200260440A5053171685 @default.
- W4200260440 hasAuthorship W4200260440A5082586707 @default.
- W4200260440 hasBestOaLocation W42002604401 @default.
- W4200260440 hasConcept C111919701 @default.
- W4200260440 hasConcept C119857082 @default.
- W4200260440 hasConcept C154945302 @default.
- W4200260440 hasConcept C15744967 @default.
- W4200260440 hasConcept C202444582 @default.
- W4200260440 hasConcept C2780586970 @default.
- W4200260440 hasConcept C33923547 @default.
- W4200260440 hasConcept C41008148 @default.
- W4200260440 hasConcept C50644808 @default.
- W4200260440 hasConcept C77805123 @default.
- W4200260440 hasConcept C9652623 @default.
- W4200260440 hasConcept C98045186 @default.
- W4200260440 hasConceptScore W4200260440C111919701 @default.
- W4200260440 hasConceptScore W4200260440C119857082 @default.
- W4200260440 hasConceptScore W4200260440C154945302 @default.
- W4200260440 hasConceptScore W4200260440C15744967 @default.
- W4200260440 hasConceptScore W4200260440C202444582 @default.
- W4200260440 hasConceptScore W4200260440C2780586970 @default.
- W4200260440 hasConceptScore W4200260440C33923547 @default.
- W4200260440 hasConceptScore W4200260440C41008148 @default.
- W4200260440 hasConceptScore W4200260440C50644808 @default.
- W4200260440 hasConceptScore W4200260440C77805123 @default.
- W4200260440 hasConceptScore W4200260440C9652623 @default.
- W4200260440 hasConceptScore W4200260440C98045186 @default.
- W4200260440 hasIssue "24" @default.
- W4200260440 hasLocation W42002604401 @default.
- W4200260440 hasLocation W42002604402 @default.
- W4200260440 hasLocation W42002604403 @default.
- W4200260440 hasOpenAccess W4200260440 @default.
- W4200260440 hasPrimaryLocation W42002604401 @default.
- W4200260440 hasRelatedWork W2104700403 @default.
- W4200260440 hasRelatedWork W2133515697 @default.
- W4200260440 hasRelatedWork W2327857945 @default.
- W4200260440 hasRelatedWork W2406532298 @default.
- W4200260440 hasRelatedWork W2961085424 @default.
- W4200260440 hasRelatedWork W2975597301 @default.
- W4200260440 hasRelatedWork W4288754364 @default.
- W4200260440 hasRelatedWork W4308734192 @default.
- W4200260440 hasRelatedWork W4312831135 @default.
- W4200260440 hasRelatedWork W1629725936 @default.
- W4200260440 hasVolume "11" @default.
- W4200260440 isParatext "false" @default.
- W4200260440 isRetracted "false" @default.
- W4200260440 workType "article" @default.