Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200265361> ?p ?o ?g. }
- W4200265361 endingPage "e00468" @default.
- W4200265361 startingPage "e00468" @default.
- W4200265361 abstract "Digital soil mapping (DSM) has been developed and applied as a cost-effective alternative to conventional mapping. Most DSM studies in predicting soil classes evaluate the accuracy of the digital maps based on the percentage of correctly classified observations over an area or other global statistical measures. There is a lack of local accuracy assessment and spatial comparison of the actual soil-landscape relationships produced by the digital maps. This study aims to address this limitation by examining the use of digital elevation models and their derivatives in predicting the spatial diversity of soil types in the Jember Regency, East Java Province, Indonesia. We evaluated the accuracy of the map using a fuzzy set-map comparison, and in addition, we assessed the soil-landscape relationship of the digital maps. The study used 783 training data in the form of map polygons combined with a suite of covariates representing topography, organisms, and soil moisture. The prediction was carried out using three machine learning techniques: K-nearest neighbors, random forest, and Decision Tree. The soil maps were evaluated using the fuzzy logic metric to determine the global and local agreement between the DSM product and a conventional soil map. The results showed that the global fuzzy matching comparison between the predicted map and the reference map ranged from poor to good (0.30–0.39). However, examining the results locally, very good local fuzzy inference values of 0.69–0.84, were found in the lowland landscapes in the south and highlands in the north. Three digital maps generated by the random forest model combining three covariates showed that the dominant soil in the lowlands near the estuary and the coast was predicted as Typic Endoaquepts, then shifted to Typic Epiaquepts upstream, both of which were Inceptisols. At the top and bottom of the mountain, the predicted soils were Typic Hapludands and Andic Dystudepts, indicating Andisols at the top and a transition from Andisols to Inceptisols at the bottom. This pattern shows that DSM could detect the relationship between soils type formed in local environmental conditions. Evaluating the soil-landscape relationships of digital soil maps can reconcile pedology and digital soil mapping." @default.
- W4200265361 created "2021-12-31" @default.
- W4200265361 creator A5021573023 @default.
- W4200265361 creator A5022535531 @default.
- W4200265361 creator A5032075540 @default.
- W4200265361 creator A5050413330 @default.
- W4200265361 creator A5055577761 @default.
- W4200265361 creator A5069100114 @default.
- W4200265361 date "2022-03-01" @default.
- W4200265361 modified "2023-10-16" @default.
- W4200265361 title "Using a fuzzy logic approach to reveal soil-landscape relationships produced by digital soil maps in the humid tropical region of East Java, Indonesia" @default.
- W4200265361 cites W1970845221 @default.
- W4200265361 cites W2014501722 @default.
- W4200265361 cites W2019894796 @default.
- W4200265361 cites W2037590182 @default.
- W4200265361 cites W2050166462 @default.
- W4200265361 cites W2054325787 @default.
- W4200265361 cites W2071868357 @default.
- W4200265361 cites W2074414809 @default.
- W4200265361 cites W2089568739 @default.
- W4200265361 cites W2089653251 @default.
- W4200265361 cites W2107945928 @default.
- W4200265361 cites W2116395914 @default.
- W4200265361 cites W2134248412 @default.
- W4200265361 cites W2756443134 @default.
- W4200265361 cites W2785158568 @default.
- W4200265361 cites W2793997912 @default.
- W4200265361 cites W2795886671 @default.
- W4200265361 cites W2890650850 @default.
- W4200265361 cites W2912358801 @default.
- W4200265361 cites W2942590207 @default.
- W4200265361 cites W2946652468 @default.
- W4200265361 cites W2955744757 @default.
- W4200265361 cites W2960002701 @default.
- W4200265361 cites W2972050955 @default.
- W4200265361 cites W3005528129 @default.
- W4200265361 cites W3049626387 @default.
- W4200265361 cites W3082040703 @default.
- W4200265361 cites W3134906919 @default.
- W4200265361 doi "https://doi.org/10.1016/j.geodrs.2021.e00468" @default.
- W4200265361 hasPublicationYear "2022" @default.
- W4200265361 type Work @default.
- W4200265361 citedByCount "1" @default.
- W4200265361 countsByYear W42002653612023 @default.
- W4200265361 crossrefType "journal-article" @default.
- W4200265361 hasAuthorship W4200265361A5021573023 @default.
- W4200265361 hasAuthorship W4200265361A5022535531 @default.
- W4200265361 hasAuthorship W4200265361A5032075540 @default.
- W4200265361 hasAuthorship W4200265361A5050413330 @default.
- W4200265361 hasAuthorship W4200265361A5055577761 @default.
- W4200265361 hasAuthorship W4200265361A5069100114 @default.
- W4200265361 hasConcept C104471815 @default.
- W4200265361 hasConcept C105795698 @default.
- W4200265361 hasConcept C154945302 @default.
- W4200265361 hasConcept C159390177 @default.
- W4200265361 hasConcept C159750122 @default.
- W4200265361 hasConcept C162324750 @default.
- W4200265361 hasConcept C165064840 @default.
- W4200265361 hasConcept C176217482 @default.
- W4200265361 hasConcept C181672929 @default.
- W4200265361 hasConcept C181843262 @default.
- W4200265361 hasConcept C199360897 @default.
- W4200265361 hasConcept C205649164 @default.
- W4200265361 hasConcept C21547014 @default.
- W4200265361 hasConcept C33923547 @default.
- W4200265361 hasConcept C39432304 @default.
- W4200265361 hasConcept C41008148 @default.
- W4200265361 hasConcept C548217200 @default.
- W4200265361 hasConcept C58166 @default.
- W4200265361 hasConcept C58640448 @default.
- W4200265361 hasConcept C62649853 @default.
- W4200265361 hasConcept C71864017 @default.
- W4200265361 hasConceptScore W4200265361C104471815 @default.
- W4200265361 hasConceptScore W4200265361C105795698 @default.
- W4200265361 hasConceptScore W4200265361C154945302 @default.
- W4200265361 hasConceptScore W4200265361C159390177 @default.
- W4200265361 hasConceptScore W4200265361C159750122 @default.
- W4200265361 hasConceptScore W4200265361C162324750 @default.
- W4200265361 hasConceptScore W4200265361C165064840 @default.
- W4200265361 hasConceptScore W4200265361C176217482 @default.
- W4200265361 hasConceptScore W4200265361C181672929 @default.
- W4200265361 hasConceptScore W4200265361C181843262 @default.
- W4200265361 hasConceptScore W4200265361C199360897 @default.
- W4200265361 hasConceptScore W4200265361C205649164 @default.
- W4200265361 hasConceptScore W4200265361C21547014 @default.
- W4200265361 hasConceptScore W4200265361C33923547 @default.
- W4200265361 hasConceptScore W4200265361C39432304 @default.
- W4200265361 hasConceptScore W4200265361C41008148 @default.
- W4200265361 hasConceptScore W4200265361C548217200 @default.
- W4200265361 hasConceptScore W4200265361C58166 @default.
- W4200265361 hasConceptScore W4200265361C58640448 @default.
- W4200265361 hasConceptScore W4200265361C62649853 @default.
- W4200265361 hasConceptScore W4200265361C71864017 @default.
- W4200265361 hasFunder F4320336712 @default.
- W4200265361 hasLocation W42002653611 @default.
- W4200265361 hasOpenAccess W4200265361 @default.
- W4200265361 hasPrimaryLocation W42002653611 @default.
- W4200265361 hasRelatedWork W1990829544 @default.