Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200268146> ?p ?o ?g. }
- W4200268146 abstract "This study proposes a convolutional neural network (CNN)-based computer-aided diagnosis (CAD) system for the grade classification of human glioma by using mid-infrared (MIR) spectroscopic mappings. Through data augmentation of pixels recombination, the mappings in the training set increased almost 161 times relative to the original mappings. The pixels of the recombined mappings in the training set came from all of the one-dimensional (1D) vibrational spectroscopy of 62 (almost 80% of all 77 patients) patients at specific bands. Compared with the performance of the CNN-CAD system based on the 1D vibrational spectroscopy, we found that the mean diagnostic accuracy of the recombined MIR spectroscopic mappings at peaks of 2917 cm-1 , 1539 cm-1 and 1234 cm-1 on the test set performed higher and the model also had more stable patterns. This research demonstrates that two-dimensional MIR mapping at a single frequency can be used by the CNN-CAD system for diagnosis and the research also gives a prompt that the mapping collection process can be replaced by a single-frequency IR imaging system, which is cheaper and more portable than a Fourier transform infrared microscopy and thus may be widely utilized in hospitals to provide meaningful assistance for pathologists in clinics." @default.
- W4200268146 created "2021-12-31" @default.
- W4200268146 creator A5030849116 @default.
- W4200268146 creator A5032257758 @default.
- W4200268146 creator A5040321412 @default.
- W4200268146 creator A5049618861 @default.
- W4200268146 creator A5055024750 @default.
- W4200268146 creator A5071012488 @default.
- W4200268146 date "2022-01-10" @default.
- W4200268146 modified "2023-10-03" @default.
- W4200268146 title "Grade classification of human glioma using a convolutional neural network based on mid‐infrared spectroscopy mapping" @default.
- W4200268146 cites W1821833354 @default.
- W4200268146 cites W1824643118 @default.
- W4200268146 cites W2011055829 @default.
- W4200268146 cites W2016504210 @default.
- W4200268146 cites W2031865774 @default.
- W4200268146 cites W2041400543 @default.
- W4200268146 cites W2063945200 @default.
- W4200268146 cites W2064850183 @default.
- W4200268146 cites W2104214361 @default.
- W4200268146 cites W2130379367 @default.
- W4200268146 cites W2155896424 @default.
- W4200268146 cites W2164556016 @default.
- W4200268146 cites W2210868848 @default.
- W4200268146 cites W2293496672 @default.
- W4200268146 cites W2492606855 @default.
- W4200268146 cites W2520790663 @default.
- W4200268146 cites W2564339002 @default.
- W4200268146 cites W2592929672 @default.
- W4200268146 cites W2620350742 @default.
- W4200268146 cites W2742994867 @default.
- W4200268146 cites W2769157021 @default.
- W4200268146 cites W2770854636 @default.
- W4200268146 cites W2779448412 @default.
- W4200268146 cites W2787518022 @default.
- W4200268146 cites W2794206575 @default.
- W4200268146 cites W2809883439 @default.
- W4200268146 cites W2811375084 @default.
- W4200268146 cites W2884120031 @default.
- W4200268146 cites W2887409581 @default.
- W4200268146 cites W2900519915 @default.
- W4200268146 cites W2905189062 @default.
- W4200268146 cites W2907620789 @default.
- W4200268146 cites W2909516836 @default.
- W4200268146 cites W2929812714 @default.
- W4200268146 cites W2943895304 @default.
- W4200268146 cites W2965191493 @default.
- W4200268146 cites W2971403019 @default.
- W4200268146 cites W2973192633 @default.
- W4200268146 cites W2981111295 @default.
- W4200268146 cites W2990739502 @default.
- W4200268146 cites W2990963177 @default.
- W4200268146 cites W2995014637 @default.
- W4200268146 cites W3001981773 @default.
- W4200268146 cites W3004868960 @default.
- W4200268146 cites W3005196913 @default.
- W4200268146 cites W3015778985 @default.
- W4200268146 cites W3036229468 @default.
- W4200268146 cites W3037115872 @default.
- W4200268146 cites W3092691517 @default.
- W4200268146 cites W3101294892 @default.
- W4200268146 cites W3162004606 @default.
- W4200268146 cites W3200329526 @default.
- W4200268146 cites W4211105004 @default.
- W4200268146 doi "https://doi.org/10.1002/jbio.202100313" @default.
- W4200268146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34931464" @default.
- W4200268146 hasPublicationYear "2022" @default.
- W4200268146 type Work @default.
- W4200268146 citedByCount "3" @default.
- W4200268146 countsByYear W42002681462023 @default.
- W4200268146 crossrefType "journal-article" @default.
- W4200268146 hasAuthorship W4200268146A5030849116 @default.
- W4200268146 hasAuthorship W4200268146A5032257758 @default.
- W4200268146 hasAuthorship W4200268146A5040321412 @default.
- W4200268146 hasAuthorship W4200268146A5049618861 @default.
- W4200268146 hasAuthorship W4200268146A5055024750 @default.
- W4200268146 hasAuthorship W4200268146A5071012488 @default.
- W4200268146 hasConcept C102519508 @default.
- W4200268146 hasConcept C120665830 @default.
- W4200268146 hasConcept C121332964 @default.
- W4200268146 hasConcept C134306372 @default.
- W4200268146 hasConcept C153180895 @default.
- W4200268146 hasConcept C153642686 @default.
- W4200268146 hasConcept C154945302 @default.
- W4200268146 hasConcept C158355884 @default.
- W4200268146 hasConcept C160633673 @default.
- W4200268146 hasConcept C160892712 @default.
- W4200268146 hasConcept C177264268 @default.
- W4200268146 hasConcept C194789388 @default.
- W4200268146 hasConcept C199360897 @default.
- W4200268146 hasConcept C2778227246 @default.
- W4200268146 hasConcept C32891209 @default.
- W4200268146 hasConcept C33923547 @default.
- W4200268146 hasConcept C41008148 @default.
- W4200268146 hasConcept C54355233 @default.
- W4200268146 hasConcept C55493867 @default.
- W4200268146 hasConcept C58489278 @default.
- W4200268146 hasConcept C62520636 @default.
- W4200268146 hasConcept C81363708 @default.
- W4200268146 hasConcept C86803240 @default.