Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200272536> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4200272536 abstract "Massive wildfires not only in Australia, but also worldwide are burning millions of hectares of forests and green land affecting the social, ecological, and economical situation. Widely used indices-based threshold methods like Normalized Burned Ratio (NBR) require a huge amount of data preprocessing and are specific to the data capturing source. State-of-the-art deep learning models, on the other hand, are supervised and require domain experts knowledge for labeling the data in huge quantity. These limitations make the existing models difficult to be adaptable to new variations in the data and capturing sources. In this work, we have proposed an unsupervised deep learning based architecture to map the burnt regions of forests by learning features progressively. The model considers small patches of satellite imagery and classifies them into burnt and not burnt. These small patches are concatenated into binary masks to segment out the burnt region of the forests. The proposed system is composed of two modules: 1) a state-of-the-art deep learning architecture for feature extraction and 2) a clustering algorithm for the generation of pseudo labels to train the deep learning architecture. The proposed method is capable of learning the features progressively in an unsupervised fashion from the data with pseudo labels, reducing the exhausting efforts of data labeling that requires expert knowledge. We have used the realtime data of Sentinel-2 for training the model and mapping the burnt regions. The obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed model." @default.
- W4200272536 created "2021-12-31" @default.
- W4200272536 creator A5003304863 @default.
- W4200272536 creator A5034960834 @default.
- W4200272536 creator A5049422969 @default.
- W4200272536 creator A5057376276 @default.
- W4200272536 creator A5059285190 @default.
- W4200272536 creator A5071991246 @default.
- W4200272536 creator A5073619925 @default.
- W4200272536 creator A5082754109 @default.
- W4200272536 creator A5090870819 @default.
- W4200272536 date "2021-11-01" @default.
- W4200272536 modified "2023-10-16" @default.
- W4200272536 title "Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning" @default.
- W4200272536 cites W1726887941 @default.
- W4200272536 cites W1977431871 @default.
- W4200272536 cites W1988126207 @default.
- W4200272536 cites W2011409266 @default.
- W4200272536 cites W2076007875 @default.
- W4200272536 cites W2119437889 @default.
- W4200272536 cites W2157812314 @default.
- W4200272536 cites W2194775991 @default.
- W4200272536 cites W2296073425 @default.
- W4200272536 cites W2480078828 @default.
- W4200272536 cites W2573821892 @default.
- W4200272536 cites W2623490820 @default.
- W4200272536 cites W2770853283 @default.
- W4200272536 cites W2793461576 @default.
- W4200272536 cites W2804113564 @default.
- W4200272536 cites W2887280559 @default.
- W4200272536 cites W2887685367 @default.
- W4200272536 cites W2908772245 @default.
- W4200272536 cites W2913323966 @default.
- W4200272536 cites W2919115771 @default.
- W4200272536 cites W2920767026 @default.
- W4200272536 cites W2946072066 @default.
- W4200272536 cites W2963131120 @default.
- W4200272536 cites W2963975998 @default.
- W4200272536 cites W2999453397 @default.
- W4200272536 cites W3007286176 @default.
- W4200272536 cites W3045606376 @default.
- W4200272536 cites W3103964896 @default.
- W4200272536 cites W3104839310 @default.
- W4200272536 cites W3172975293 @default.
- W4200272536 doi "https://doi.org/10.1109/dicta52665.2021.9647174" @default.
- W4200272536 hasPublicationYear "2021" @default.
- W4200272536 type Work @default.
- W4200272536 citedByCount "1" @default.
- W4200272536 countsByYear W42002725362022 @default.
- W4200272536 crossrefType "proceedings-article" @default.
- W4200272536 hasAuthorship W4200272536A5003304863 @default.
- W4200272536 hasAuthorship W4200272536A5034960834 @default.
- W4200272536 hasAuthorship W4200272536A5049422969 @default.
- W4200272536 hasAuthorship W4200272536A5057376276 @default.
- W4200272536 hasAuthorship W4200272536A5059285190 @default.
- W4200272536 hasAuthorship W4200272536A5071991246 @default.
- W4200272536 hasAuthorship W4200272536A5073619925 @default.
- W4200272536 hasAuthorship W4200272536A5082754109 @default.
- W4200272536 hasAuthorship W4200272536A5090870819 @default.
- W4200272536 hasConcept C10551718 @default.
- W4200272536 hasConcept C108583219 @default.
- W4200272536 hasConcept C119857082 @default.
- W4200272536 hasConcept C136389625 @default.
- W4200272536 hasConcept C153180895 @default.
- W4200272536 hasConcept C154945302 @default.
- W4200272536 hasConcept C34736171 @default.
- W4200272536 hasConcept C41008148 @default.
- W4200272536 hasConcept C50644808 @default.
- W4200272536 hasConcept C52622490 @default.
- W4200272536 hasConcept C73555534 @default.
- W4200272536 hasConcept C8038995 @default.
- W4200272536 hasConceptScore W4200272536C10551718 @default.
- W4200272536 hasConceptScore W4200272536C108583219 @default.
- W4200272536 hasConceptScore W4200272536C119857082 @default.
- W4200272536 hasConceptScore W4200272536C136389625 @default.
- W4200272536 hasConceptScore W4200272536C153180895 @default.
- W4200272536 hasConceptScore W4200272536C154945302 @default.
- W4200272536 hasConceptScore W4200272536C34736171 @default.
- W4200272536 hasConceptScore W4200272536C41008148 @default.
- W4200272536 hasConceptScore W4200272536C50644808 @default.
- W4200272536 hasConceptScore W4200272536C52622490 @default.
- W4200272536 hasConceptScore W4200272536C73555534 @default.
- W4200272536 hasConceptScore W4200272536C8038995 @default.
- W4200272536 hasLocation W42002725361 @default.
- W4200272536 hasOpenAccess W4200272536 @default.
- W4200272536 hasPrimaryLocation W42002725361 @default.
- W4200272536 hasRelatedWork W2126100045 @default.
- W4200272536 hasRelatedWork W2391959412 @default.
- W4200272536 hasRelatedWork W2773120646 @default.
- W4200272536 hasRelatedWork W2908875379 @default.
- W4200272536 hasRelatedWork W2947809439 @default.
- W4200272536 hasRelatedWork W3082895349 @default.
- W4200272536 hasRelatedWork W3123344745 @default.
- W4200272536 hasRelatedWork W3192794374 @default.
- W4200272536 hasRelatedWork W4221136938 @default.
- W4200272536 hasRelatedWork W4246751904 @default.
- W4200272536 isParatext "false" @default.
- W4200272536 isRetracted "false" @default.
- W4200272536 workType "article" @default.