Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200278481> ?p ?o ?g. }
- W4200278481 endingPage "17" @default.
- W4200278481 startingPage "17" @default.
- W4200278481 abstract "Long-term Global Navigation Satellite System (GNSS) height residual time series contain signals that are related to environmental influences. A big part of the residuals can be explained by environmental surface loadings, expressed through physical models. This work aims to find a model that connects raw meteorological parameters with the GNSS residuals. The approach is to train a Temporal Convolutional Network (TCN) on 206 GNSS stations in central Europe, after which the resulting model is applied to 68 test stations in the same area. When comparing the Root Mean Square (RMS) error reduction of the time series reduced by physical models, and, by the TCN model, the latter reduction rate is, on average, 0.8% lower. In a second experiment, the TCN is utilized to further reduce the RMS of the time series, of which the loading models were already subtracted. This yields additional 2.7% of RMS reduction on average, resulting in a mean RMS reduction of 28.6% overall. The results suggests that a TCN, using meteorological features as input data, is able to reconstruct the reductions almost on the same level as physical models. Trained on the residuals, reduced by environmental loadings, the TCN is still able to slightly increase the overall reduction of variations in the GNSS station position time series." @default.
- W4200278481 created "2021-12-31" @default.
- W4200278481 creator A5008566906 @default.
- W4200278481 creator A5036784654 @default.
- W4200278481 creator A5046082471 @default.
- W4200278481 creator A5068046815 @default.
- W4200278481 creator A5071121905 @default.
- W4200278481 date "2021-12-22" @default.
- W4200278481 modified "2023-09-30" @default.
- W4200278481 title "Modeling of Residual GNSS Station Motions through Meteorological Data in a Machine Learning Approach" @default.
- W4200278481 cites W1665436711 @default.
- W4200278481 cites W1997722977 @default.
- W4200278481 cites W2002722242 @default.
- W4200278481 cites W2021769331 @default.
- W4200278481 cites W2095833674 @default.
- W4200278481 cites W2100924164 @default.
- W4200278481 cites W2100967670 @default.
- W4200278481 cites W2194644153 @default.
- W4200278481 cites W2550143307 @default.
- W4200278481 cites W2800706465 @default.
- W4200278481 cites W2893726365 @default.
- W4200278481 cites W2897905605 @default.
- W4200278481 cites W2974130202 @default.
- W4200278481 cites W2998702723 @default.
- W4200278481 cites W3006177560 @default.
- W4200278481 cites W3006224308 @default.
- W4200278481 cites W3007870372 @default.
- W4200278481 cites W3015425350 @default.
- W4200278481 cites W3019433526 @default.
- W4200278481 cites W3025111165 @default.
- W4200278481 cites W3033309374 @default.
- W4200278481 cites W3046971633 @default.
- W4200278481 cites W3048067806 @default.
- W4200278481 cites W3080720030 @default.
- W4200278481 cites W3081971128 @default.
- W4200278481 cites W3084162751 @default.
- W4200278481 cites W3113222636 @default.
- W4200278481 cites W3126493657 @default.
- W4200278481 cites W3129165379 @default.
- W4200278481 cites W3154427911 @default.
- W4200278481 cites W3169427069 @default.
- W4200278481 cites W3192426520 @default.
- W4200278481 cites W3200295088 @default.
- W4200278481 cites W3214566941 @default.
- W4200278481 cites W33487424 @default.
- W4200278481 doi "https://doi.org/10.3390/rs14010017" @default.
- W4200278481 hasPublicationYear "2021" @default.
- W4200278481 type Work @default.
- W4200278481 citedByCount "3" @default.
- W4200278481 countsByYear W42002784812022 @default.
- W4200278481 countsByYear W42002784812023 @default.
- W4200278481 crossrefType "journal-article" @default.
- W4200278481 hasAuthorship W4200278481A5008566906 @default.
- W4200278481 hasAuthorship W4200278481A5036784654 @default.
- W4200278481 hasAuthorship W4200278481A5046082471 @default.
- W4200278481 hasAuthorship W4200278481A5068046815 @default.
- W4200278481 hasAuthorship W4200278481A5071121905 @default.
- W4200278481 hasBestOaLocation W42002784811 @default.
- W4200278481 hasConcept C105795698 @default.
- W4200278481 hasConcept C111335779 @default.
- W4200278481 hasConcept C11413529 @default.
- W4200278481 hasConcept C119599485 @default.
- W4200278481 hasConcept C127313418 @default.
- W4200278481 hasConcept C127413603 @default.
- W4200278481 hasConcept C139945424 @default.
- W4200278481 hasConcept C14279187 @default.
- W4200278481 hasConcept C143724316 @default.
- W4200278481 hasConcept C146978453 @default.
- W4200278481 hasConcept C151730666 @default.
- W4200278481 hasConcept C153294291 @default.
- W4200278481 hasConcept C155512373 @default.
- W4200278481 hasConcept C19269812 @default.
- W4200278481 hasConcept C205649164 @default.
- W4200278481 hasConcept C2524010 @default.
- W4200278481 hasConcept C2778027091 @default.
- W4200278481 hasConcept C33923547 @default.
- W4200278481 hasConcept C39432304 @default.
- W4200278481 hasConcept C41008148 @default.
- W4200278481 hasConcept C60229501 @default.
- W4200278481 hasConcept C71907059 @default.
- W4200278481 hasConcept C76155785 @default.
- W4200278481 hasConceptScore W4200278481C105795698 @default.
- W4200278481 hasConceptScore W4200278481C111335779 @default.
- W4200278481 hasConceptScore W4200278481C11413529 @default.
- W4200278481 hasConceptScore W4200278481C119599485 @default.
- W4200278481 hasConceptScore W4200278481C127313418 @default.
- W4200278481 hasConceptScore W4200278481C127413603 @default.
- W4200278481 hasConceptScore W4200278481C139945424 @default.
- W4200278481 hasConceptScore W4200278481C14279187 @default.
- W4200278481 hasConceptScore W4200278481C143724316 @default.
- W4200278481 hasConceptScore W4200278481C146978453 @default.
- W4200278481 hasConceptScore W4200278481C151730666 @default.
- W4200278481 hasConceptScore W4200278481C153294291 @default.
- W4200278481 hasConceptScore W4200278481C155512373 @default.
- W4200278481 hasConceptScore W4200278481C19269812 @default.
- W4200278481 hasConceptScore W4200278481C205649164 @default.
- W4200278481 hasConceptScore W4200278481C2524010 @default.
- W4200278481 hasConceptScore W4200278481C2778027091 @default.