Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200280393> ?p ?o ?g. }
- W4200280393 endingPage "186" @default.
- W4200280393 startingPage "186" @default.
- W4200280393 abstract "Finite Gamma mixture models have proved to be flexible and can take prior information into account to improve generalization capability, which make them interesting for several machine learning and data mining applications. In this study, an efficient Gamma mixture model-based approach for proportional vector clustering is proposed. In particular, a sophisticated entropy-based variational algorithm is developed to learn the model and optimize its complexity simultaneously. Moreover, a component-splitting principle is investigated, here, to handle the problem of model selection and to prevent over-fitting, which is an added advantage, as it is done within the variational framework. The performance and merits of the proposed framework are evaluated on multiple, real-challenging applications including dynamic textures clustering, objects categorization and human gesture recognition." @default.
- W4200280393 created "2021-12-31" @default.
- W4200280393 creator A5023260000 @default.
- W4200280393 creator A5024097894 @default.
- W4200280393 creator A5090600716 @default.
- W4200280393 date "2021-12-28" @default.
- W4200280393 modified "2023-10-06" @default.
- W4200280393 title "Entropy-Based Variational Scheme with Component Splitting for the Efficient Learning of Gamma Mixtures" @default.
- W4200280393 cites W1516111018 @default.
- W4200280393 cites W1976566382 @default.
- W4200280393 cites W1981050900 @default.
- W4200280393 cites W1988446510 @default.
- W4200280393 cites W1992960277 @default.
- W4200280393 cites W2003244299 @default.
- W4200280393 cites W2004663190 @default.
- W4200280393 cites W2007819283 @default.
- W4200280393 cites W2018905040 @default.
- W4200280393 cites W2023906997 @default.
- W4200280393 cites W2033996602 @default.
- W4200280393 cites W2050453099 @default.
- W4200280393 cites W2133703553 @default.
- W4200280393 cites W2151103935 @default.
- W4200280393 cites W2168392347 @default.
- W4200280393 cites W2169026875 @default.
- W4200280393 cites W2549601578 @default.
- W4200280393 cites W2802162151 @default.
- W4200280393 cites W2912155302 @default.
- W4200280393 cites W2990179544 @default.
- W4200280393 cites W3047469063 @default.
- W4200280393 cites W3091775311 @default.
- W4200280393 cites W3116438773 @default.
- W4200280393 cites W3119497255 @default.
- W4200280393 cites W3120730087 @default.
- W4200280393 cites W3151220847 @default.
- W4200280393 cites W3161255900 @default.
- W4200280393 doi "https://doi.org/10.3390/s22010186" @default.
- W4200280393 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35009726" @default.
- W4200280393 hasPublicationYear "2021" @default.
- W4200280393 type Work @default.
- W4200280393 citedByCount "3" @default.
- W4200280393 countsByYear W42002803932022 @default.
- W4200280393 countsByYear W42002803932023 @default.
- W4200280393 crossrefType "journal-article" @default.
- W4200280393 hasAuthorship W4200280393A5023260000 @default.
- W4200280393 hasAuthorship W4200280393A5024097894 @default.
- W4200280393 hasAuthorship W4200280393A5090600716 @default.
- W4200280393 hasBestOaLocation W42002803931 @default.
- W4200280393 hasConcept C106301342 @default.
- W4200280393 hasConcept C11413529 @default.
- W4200280393 hasConcept C119857082 @default.
- W4200280393 hasConcept C121332964 @default.
- W4200280393 hasConcept C134306372 @default.
- W4200280393 hasConcept C154945302 @default.
- W4200280393 hasConcept C168167062 @default.
- W4200280393 hasConcept C177148314 @default.
- W4200280393 hasConcept C33923547 @default.
- W4200280393 hasConcept C41008148 @default.
- W4200280393 hasConcept C62520636 @default.
- W4200280393 hasConcept C73555534 @default.
- W4200280393 hasConcept C77618280 @default.
- W4200280393 hasConcept C93959086 @default.
- W4200280393 hasConcept C94124525 @default.
- W4200280393 hasConcept C97355855 @default.
- W4200280393 hasConceptScore W4200280393C106301342 @default.
- W4200280393 hasConceptScore W4200280393C11413529 @default.
- W4200280393 hasConceptScore W4200280393C119857082 @default.
- W4200280393 hasConceptScore W4200280393C121332964 @default.
- W4200280393 hasConceptScore W4200280393C134306372 @default.
- W4200280393 hasConceptScore W4200280393C154945302 @default.
- W4200280393 hasConceptScore W4200280393C168167062 @default.
- W4200280393 hasConceptScore W4200280393C177148314 @default.
- W4200280393 hasConceptScore W4200280393C33923547 @default.
- W4200280393 hasConceptScore W4200280393C41008148 @default.
- W4200280393 hasConceptScore W4200280393C62520636 @default.
- W4200280393 hasConceptScore W4200280393C73555534 @default.
- W4200280393 hasConceptScore W4200280393C77618280 @default.
- W4200280393 hasConceptScore W4200280393C93959086 @default.
- W4200280393 hasConceptScore W4200280393C94124525 @default.
- W4200280393 hasConceptScore W4200280393C97355855 @default.
- W4200280393 hasIssue "1" @default.
- W4200280393 hasLocation W42002803931 @default.
- W4200280393 hasLocation W42002803932 @default.
- W4200280393 hasLocation W42002803933 @default.
- W4200280393 hasLocation W42002803934 @default.
- W4200280393 hasOpenAccess W4200280393 @default.
- W4200280393 hasPrimaryLocation W42002803931 @default.
- W4200280393 hasRelatedWork W1834608617 @default.
- W4200280393 hasRelatedWork W2054409147 @default.
- W4200280393 hasRelatedWork W2365213443 @default.
- W4200280393 hasRelatedWork W2379533788 @default.
- W4200280393 hasRelatedWork W2933653026 @default.
- W4200280393 hasRelatedWork W2961085424 @default.
- W4200280393 hasRelatedWork W4225307033 @default.
- W4200280393 hasRelatedWork W4235749078 @default.
- W4200280393 hasRelatedWork W4250128246 @default.
- W4200280393 hasRelatedWork W4306674287 @default.
- W4200280393 hasVolume "22" @default.
- W4200280393 isParatext "false" @default.