Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200281712> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4200281712 endingPage "032010" @default.
- W4200281712 startingPage "032010" @default.
- W4200281712 abstract "Abstract The traditional BP neural network is difficult to achieve the target effect in the prediction of waterway cargo turnover. In order to improve the accuracy of waterway cargo turnover forecast, a waterway cargo turnover forecast model was created based on genetic algorithm to optimize neural network parameters. The genetic algorithm overcomes the trap that the general iterative method easily falls into, that is, the “endless loop” phenomenon that occurs when the local minimum is small, and the calculation time is small, and the robustness is high. Using genetic algorithm optimized BP neural network to predict waterway cargo turnover, and the empirical analysis of the waterway cargo turnover forecast is carried out. The results obtained show that the neural network waterway optimized by genetic algorithm has a higher accuracy than the traditional BP neural network for predicting waterway cargo turnover, and the optimization model can long-term analysis of the characteristics of waterway cargo turnover changes shows that the prediction effect is far better than traditional neural networks." @default.
- W4200281712 created "2021-12-31" @default.
- W4200281712 creator A5001499223 @default.
- W4200281712 date "2021-11-01" @default.
- W4200281712 modified "2023-10-18" @default.
- W4200281712 title "Forecast of Waterway Cargo Turnover Volume Based on Genetic Algorithm to Optimize Neural Network Parameters" @default.
- W4200281712 doi "https://doi.org/10.1088/1742-6596/2083/3/032010" @default.
- W4200281712 hasPublicationYear "2021" @default.
- W4200281712 type Work @default.
- W4200281712 citedByCount "0" @default.
- W4200281712 crossrefType "journal-article" @default.
- W4200281712 hasAuthorship W4200281712A5001499223 @default.
- W4200281712 hasBestOaLocation W42002817121 @default.
- W4200281712 hasConcept C104317684 @default.
- W4200281712 hasConcept C11413529 @default.
- W4200281712 hasConcept C119857082 @default.
- W4200281712 hasConcept C154945302 @default.
- W4200281712 hasConcept C185592680 @default.
- W4200281712 hasConcept C41008148 @default.
- W4200281712 hasConcept C50644808 @default.
- W4200281712 hasConcept C55493867 @default.
- W4200281712 hasConcept C63479239 @default.
- W4200281712 hasConcept C8880873 @default.
- W4200281712 hasConceptScore W4200281712C104317684 @default.
- W4200281712 hasConceptScore W4200281712C11413529 @default.
- W4200281712 hasConceptScore W4200281712C119857082 @default.
- W4200281712 hasConceptScore W4200281712C154945302 @default.
- W4200281712 hasConceptScore W4200281712C185592680 @default.
- W4200281712 hasConceptScore W4200281712C41008148 @default.
- W4200281712 hasConceptScore W4200281712C50644808 @default.
- W4200281712 hasConceptScore W4200281712C55493867 @default.
- W4200281712 hasConceptScore W4200281712C63479239 @default.
- W4200281712 hasConceptScore W4200281712C8880873 @default.
- W4200281712 hasIssue "3" @default.
- W4200281712 hasLocation W42002817121 @default.
- W4200281712 hasOpenAccess W4200281712 @default.
- W4200281712 hasPrimaryLocation W42002817121 @default.
- W4200281712 hasRelatedWork W2016080341 @default.
- W4200281712 hasRelatedWork W2356957943 @default.
- W4200281712 hasRelatedWork W2359549665 @default.
- W4200281712 hasRelatedWork W2362315382 @default.
- W4200281712 hasRelatedWork W2363475415 @default.
- W4200281712 hasRelatedWork W2382761789 @default.
- W4200281712 hasRelatedWork W2386058197 @default.
- W4200281712 hasRelatedWork W2386387936 @default.
- W4200281712 hasRelatedWork W2392110728 @default.
- W4200281712 hasRelatedWork W3195272954 @default.
- W4200281712 hasVolume "2083" @default.
- W4200281712 isParatext "false" @default.
- W4200281712 isRetracted "false" @default.
- W4200281712 workType "article" @default.