Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200283003> ?p ?o ?g. }
- W4200283003 endingPage "126856" @default.
- W4200283003 startingPage "126856" @default.
- W4200283003 abstract "• The 1D models of non-Newtonian hemodynamics are introduced. • The perturbation method is used for the analytical solution of the problems for the inviscid model. • The analytical solutions of the model problems for the infinite, semi-infinite, and finite interval are obtained. • The solutions, obtained for the inviscid and viscid models are compared and the effect of the velocity profile is analyzed. The paper is devoted to the comparison of one-dimensional blood flow models in application to the solution of model problems. In the viscid case, the non-Newtonian properties of blood are considered. Original one-dimensional models, based on the Carreau, Carreau–Yasuda, Cross, and Powell–Eyring rheological models, are constructed by the averaging of the Navier–Stokes equations. The approach to the analytical solution of problems in the inviscid case is proposed. The originality of the method is based on the small perturbation of the initial rest state, corresponding to zero velocity. It leads to the solution of the linear wave equations. The solutions of three problems — for the infinite, semi-infinite, and finite intervals are obtained. The examples are presented for the small parameter value ∼ 10 − 2 . Analytical solutions are used for the comparison of different one-dimensional models of blood flow, where the viscosity (Newtonian and non-Newtonian) is considered. The problems for the viscid models are solved numerically by the third-order WENO scheme. As the results of the comparison of models, the effects of the viscosity and velocity profile are analyzed. From a practical viewpoint, the solutions obtained by the perturbation method can be used for the testing of programs for numerical simulations and for the comparison of different blood flow models." @default.
- W4200283003 created "2021-12-31" @default.
- W4200283003 creator A5003180256 @default.
- W4200283003 date "2022-04-01" @default.
- W4200283003 modified "2023-09-27" @default.
- W4200283003 title "Comparison of inviscid and viscid one-dimensional models of blood flow in arteries" @default.
- W4200283003 cites W1457337077 @default.
- W4200283003 cites W1490886285 @default.
- W4200283003 cites W1763618178 @default.
- W4200283003 cites W1886421468 @default.
- W4200283003 cites W1894897834 @default.
- W4200283003 cites W1932884829 @default.
- W4200283003 cites W1986772359 @default.
- W4200283003 cites W1989534584 @default.
- W4200283003 cites W1996264017 @default.
- W4200283003 cites W1998300270 @default.
- W4200283003 cites W2000722137 @default.
- W4200283003 cites W2012242894 @default.
- W4200283003 cites W2015541104 @default.
- W4200283003 cites W2018220075 @default.
- W4200283003 cites W2019636088 @default.
- W4200283003 cites W2021135850 @default.
- W4200283003 cites W2023851480 @default.
- W4200283003 cites W2025710183 @default.
- W4200283003 cites W2028092626 @default.
- W4200283003 cites W2029136073 @default.
- W4200283003 cites W2037287851 @default.
- W4200283003 cites W2037355049 @default.
- W4200283003 cites W2037873975 @default.
- W4200283003 cites W2039195990 @default.
- W4200283003 cites W2045849310 @default.
- W4200283003 cites W2074826790 @default.
- W4200283003 cites W2075737367 @default.
- W4200283003 cites W2081651178 @default.
- W4200283003 cites W2086799842 @default.
- W4200283003 cites W2089494470 @default.
- W4200283003 cites W2091973326 @default.
- W4200283003 cites W2099000630 @default.
- W4200283003 cites W2149946401 @default.
- W4200283003 cites W2152102493 @default.
- W4200283003 cites W2156106681 @default.
- W4200283003 cites W2168308757 @default.
- W4200283003 cites W2210575137 @default.
- W4200283003 cites W2259414180 @default.
- W4200283003 cites W2287431213 @default.
- W4200283003 cites W2299449493 @default.
- W4200283003 cites W2320435961 @default.
- W4200283003 cites W2328560704 @default.
- W4200283003 cites W2438226009 @default.
- W4200283003 cites W2485601016 @default.
- W4200283003 cites W2522599540 @default.
- W4200283003 cites W2531549286 @default.
- W4200283003 cites W2593715408 @default.
- W4200283003 cites W2611710652 @default.
- W4200283003 cites W2764052969 @default.
- W4200283003 cites W2775114142 @default.
- W4200283003 cites W2789709954 @default.
- W4200283003 cites W2791526987 @default.
- W4200283003 cites W2811103545 @default.
- W4200283003 cites W2896218745 @default.
- W4200283003 cites W2904042955 @default.
- W4200283003 cites W2912686993 @default.
- W4200283003 cites W2963548925 @default.
- W4200283003 cites W2984254454 @default.
- W4200283003 cites W2989920037 @default.
- W4200283003 cites W2994230705 @default.
- W4200283003 cites W2998850829 @default.
- W4200283003 cites W3002853846 @default.
- W4200283003 cites W3003937469 @default.
- W4200283003 cites W3005364979 @default.
- W4200283003 cites W3008781426 @default.
- W4200283003 cites W3009777082 @default.
- W4200283003 cites W3010934937 @default.
- W4200283003 cites W3011662573 @default.
- W4200283003 cites W3012320521 @default.
- W4200283003 cites W3026983230 @default.
- W4200283003 cites W3027096921 @default.
- W4200283003 cites W3027684050 @default.
- W4200283003 cites W3037452646 @default.
- W4200283003 cites W3040136276 @default.
- W4200283003 cites W3106480597 @default.
- W4200283003 cites W3131445560 @default.
- W4200283003 cites W3155425389 @default.
- W4200283003 cites W3157603409 @default.
- W4200283003 doi "https://doi.org/10.1016/j.amc.2021.126856" @default.
- W4200283003 hasPublicationYear "2022" @default.
- W4200283003 type Work @default.
- W4200283003 citedByCount "1" @default.
- W4200283003 countsByYear W42002830032023 @default.
- W4200283003 crossrefType "journal-article" @default.
- W4200283003 hasAuthorship W4200283003A5003180256 @default.
- W4200283003 hasConcept C102560166 @default.
- W4200283003 hasConcept C121332964 @default.
- W4200283003 hasConcept C127172972 @default.
- W4200283003 hasConcept C134306372 @default.
- W4200283003 hasConcept C177918212 @default.
- W4200283003 hasConcept C2524010 @default.
- W4200283003 hasConcept C294558 @default.