Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200285824> ?p ?o ?g. }
- W4200285824 endingPage "29" @default.
- W4200285824 startingPage "20" @default.
- W4200285824 abstract "The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies." @default.
- W4200285824 created "2021-12-31" @default.
- W4200285824 creator A5002398033 @default.
- W4200285824 creator A5012719636 @default.
- W4200285824 creator A5018676117 @default.
- W4200285824 creator A5021376482 @default.
- W4200285824 creator A5026217652 @default.
- W4200285824 creator A5026265793 @default.
- W4200285824 creator A5068783635 @default.
- W4200285824 date "2022-01-01" @default.
- W4200285824 modified "2023-10-14" @default.
- W4200285824 title "A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface" @default.
- W4200285824 cites W1969878365 @default.
- W4200285824 cites W1970070014 @default.
- W4200285824 cites W1970989973 @default.
- W4200285824 cites W1980090921 @default.
- W4200285824 cites W1987206804 @default.
- W4200285824 cites W2006082701 @default.
- W4200285824 cites W2006090510 @default.
- W4200285824 cites W2020253000 @default.
- W4200285824 cites W2031498849 @default.
- W4200285824 cites W2041782669 @default.
- W4200285824 cites W2057072986 @default.
- W4200285824 cites W2078087619 @default.
- W4200285824 cites W2091930044 @default.
- W4200285824 cites W2097645701 @default.
- W4200285824 cites W2119185655 @default.
- W4200285824 cites W2128404967 @default.
- W4200285824 cites W2138378368 @default.
- W4200285824 cites W2142280324 @default.
- W4200285824 cites W2151669316 @default.
- W4200285824 cites W2162800060 @default.
- W4200285824 cites W2163756472 @default.
- W4200285824 cites W2167822639 @default.
- W4200285824 cites W2202183074 @default.
- W4200285824 cites W2288754303 @default.
- W4200285824 cites W2354225344 @default.
- W4200285824 cites W2508284143 @default.
- W4200285824 cites W2623656704 @default.
- W4200285824 cites W2756928350 @default.
- W4200285824 cites W2765815105 @default.
- W4200285824 cites W2767333869 @default.
- W4200285824 cites W2790114788 @default.
- W4200285824 cites W2792687613 @default.
- W4200285824 cites W2792724009 @default.
- W4200285824 cites W2798673040 @default.
- W4200285824 cites W2905915376 @default.
- W4200285824 cites W2911417109 @default.
- W4200285824 cites W2912746303 @default.
- W4200285824 cites W2947528994 @default.
- W4200285824 cites W2960585436 @default.
- W4200285824 cites W2963283402 @default.
- W4200285824 cites W2990200213 @default.
- W4200285824 cites W2991183506 @default.
- W4200285824 cites W2991224771 @default.
- W4200285824 cites W2996605177 @default.
- W4200285824 cites W2998959557 @default.
- W4200285824 cites W3007612421 @default.
- W4200285824 cites W3019900571 @default.
- W4200285824 cites W3080395176 @default.
- W4200285824 cites W3102455230 @default.
- W4200285824 cites W3110100085 @default.
- W4200285824 cites W3124042536 @default.
- W4200285824 cites W3129685057 @default.
- W4200285824 cites W4211091012 @default.
- W4200285824 doi "https://doi.org/10.1109/tnsre.2021.3139095" @default.
- W4200285824 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34962871" @default.
- W4200285824 hasPublicationYear "2022" @default.
- W4200285824 type Work @default.
- W4200285824 citedByCount "16" @default.
- W4200285824 countsByYear W42002858242022 @default.
- W4200285824 countsByYear W42002858242023 @default.
- W4200285824 crossrefType "journal-article" @default.
- W4200285824 hasAuthorship W4200285824A5002398033 @default.
- W4200285824 hasAuthorship W4200285824A5012719636 @default.
- W4200285824 hasAuthorship W4200285824A5018676117 @default.
- W4200285824 hasAuthorship W4200285824A5021376482 @default.
- W4200285824 hasAuthorship W4200285824A5026217652 @default.
- W4200285824 hasAuthorship W4200285824A5026265793 @default.
- W4200285824 hasAuthorship W4200285824A5068783635 @default.
- W4200285824 hasBestOaLocation W42002858241 @default.
- W4200285824 hasConcept C118552586 @default.
- W4200285824 hasConcept C119857082 @default.
- W4200285824 hasConcept C12267149 @default.
- W4200285824 hasConcept C123860398 @default.
- W4200285824 hasConcept C132525143 @default.
- W4200285824 hasConcept C153180895 @default.
- W4200285824 hasConcept C154945302 @default.
- W4200285824 hasConcept C15744967 @default.
- W4200285824 hasConcept C173201364 @default.
- W4200285824 hasConcept C41008148 @default.
- W4200285824 hasConcept C41608201 @default.
- W4200285824 hasConcept C522805319 @default.
- W4200285824 hasConcept C54808283 @default.
- W4200285824 hasConcept C75564084 @default.
- W4200285824 hasConcept C80444323 @default.
- W4200285824 hasConcept C95623464 @default.
- W4200285824 hasConceptScore W4200285824C118552586 @default.