Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200288697> ?p ?o ?g. }
- W4200288697 endingPage "12" @default.
- W4200288697 startingPage "1" @default.
- W4200288697 abstract "To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images.Meta-analysis.PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types.One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]).Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility." @default.
- W4200288697 created "2021-12-31" @default.
- W4200288697 creator A5043994887 @default.
- W4200288697 creator A5046481278 @default.
- W4200288697 creator A5051036746 @default.
- W4200288697 creator A5071360328 @default.
- W4200288697 date "2022-05-01" @default.
- W4200288697 modified "2023-10-18" @default.
- W4200288697 title "Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis" @default.
- W4200288697 cites W1767958966 @default.
- W4200288697 cites W1811793049 @default.
- W4200288697 cites W1917574908 @default.
- W4200288697 cites W1921244095 @default.
- W4200288697 cites W1977169277 @default.
- W4200288697 cites W1977793107 @default.
- W4200288697 cites W2001109731 @default.
- W4200288697 cites W2007172634 @default.
- W4200288697 cites W2012847139 @default.
- W4200288697 cites W2017457205 @default.
- W4200288697 cites W2017822149 @default.
- W4200288697 cites W2018830174 @default.
- W4200288697 cites W2021933371 @default.
- W4200288697 cites W2022710429 @default.
- W4200288697 cites W2028582332 @default.
- W4200288697 cites W2034316608 @default.
- W4200288697 cites W2037185928 @default.
- W4200288697 cites W2038450698 @default.
- W4200288697 cites W2047178949 @default.
- W4200288697 cites W2061997187 @default.
- W4200288697 cites W2069603514 @default.
- W4200288697 cites W2072167026 @default.
- W4200288697 cites W2084782093 @default.
- W4200288697 cites W2089479074 @default.
- W4200288697 cites W2090271199 @default.
- W4200288697 cites W2124460576 @default.
- W4200288697 cites W2126137484 @default.
- W4200288697 cites W2160605010 @default.
- W4200288697 cites W2161663128 @default.
- W4200288697 cites W2163716767 @default.
- W4200288697 cites W2172410134 @default.
- W4200288697 cites W2187731819 @default.
- W4200288697 cites W2313051742 @default.
- W4200288697 cites W2317012555 @default.
- W4200288697 cites W2320991284 @default.
- W4200288697 cites W2323173848 @default.
- W4200288697 cites W2328967026 @default.
- W4200288697 cites W2329876315 @default.
- W4200288697 cites W2330025265 @default.
- W4200288697 cites W2338203391 @default.
- W4200288697 cites W2468387181 @default.
- W4200288697 cites W2517606103 @default.
- W4200288697 cites W2518134266 @default.
- W4200288697 cites W2521652955 @default.
- W4200288697 cites W2533800772 @default.
- W4200288697 cites W2558381168 @default.
- W4200288697 cites W2603287756 @default.
- W4200288697 cites W2664267452 @default.
- W4200288697 cites W2739090751 @default.
- W4200288697 cites W2766593955 @default.
- W4200288697 cites W2772246530 @default.
- W4200288697 cites W2778550933 @default.
- W4200288697 cites W2791059692 @default.
- W4200288697 cites W2792026451 @default.
- W4200288697 cites W2793823653 @default.
- W4200288697 cites W2809254203 @default.
- W4200288697 cites W2809787027 @default.
- W4200288697 cites W2888424632 @default.
- W4200288697 cites W2893356526 @default.
- W4200288697 cites W2896056014 @default.
- W4200288697 cites W2898192966 @default.
- W4200288697 cites W2902877517 @default.
- W4200288697 cites W2903117925 @default.
- W4200288697 cites W2905339389 @default.
- W4200288697 cites W2908790290 @default.
- W4200288697 cites W2911554082 @default.
- W4200288697 cites W2912806832 @default.
- W4200288697 cites W2916048747 @default.
- W4200288697 cites W2919115771 @default.
- W4200288697 cites W2929375793 @default.
- W4200288697 cites W2938600289 @default.
- W4200288697 cites W2941075605 @default.
- W4200288697 cites W2942638530 @default.
- W4200288697 cites W2942953617 @default.
- W4200288697 cites W2945322186 @default.
- W4200288697 cites W2953501876 @default.
- W4200288697 cites W2955420986 @default.
- W4200288697 cites W2960170118 @default.
- W4200288697 cites W2964087585 @default.
- W4200288697 cites W2964457978 @default.
- W4200288697 cites W2967553000 @default.
- W4200288697 cites W2968303179 @default.
- W4200288697 cites W2968390007 @default.
- W4200288697 cites W2969678086 @default.
- W4200288697 cites W2972844301 @default.
- W4200288697 cites W2976808722 @default.
- W4200288697 cites W2979356414 @default.
- W4200288697 cites W2979824901 @default.
- W4200288697 cites W2981699788 @default.