Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200289322> ?p ?o ?g. }
- W4200289322 endingPage "25" @default.
- W4200289322 startingPage "10" @default.
- W4200289322 abstract "Canadian and United States (US) insect resistance management (IRM) programs for lepidopteran pests in Bacillus thuriengiensis (Bt)-expressing crops are optimally designed for Ostrinia nubilalis Hübner in corn (Zea mays L.) and Chloridea virescens Fabricius in cotton (Gossypium hirsutum L.). Both Bt corn and cotton express a high dose for these pests; however, there are many other target pests for which Bt crops do not express high doses (commonly referred to as nonhigh dose pests). Two important lepidopteran nonhigh dose (low susceptibility) pests are Helicoverpa zea Boddie (Lepidoptera: Noctuidae) and Striacosta albicosta Smith (Lepidoptera: Noctuidae). We highlight both pests as cautionary examples of exposure to nonhigh dose levels of Bt toxins when the IRM plan was not followed. Moreover, IRM practices to delay Bt resistance that are designed for these two ecologically challenging and important pests should apply to species that are more susceptible to Bt toxins. The purpose of this article is to propose five best management practices to delay the evolution of Bt resistance in lepidopteran pests with low susceptibility to Bt toxins in Canada and the US: 1) better understand resistance potential before commercialization, 2) strengthen IRM based on regional pest pressure by restricting Bt usage where it is of little benefit, 3) require and incentivize planting of structured corn refuge everywhere for single toxin cultivars and in the southern US for pyramids, 4) integrate field and laboratory resistance monitoring programs, and 5) effectively use unexpected injury thresholds." @default.
- W4200289322 created "2021-12-31" @default.
- W4200289322 creator A5016182285 @default.
- W4200289322 creator A5018854266 @default.
- W4200289322 creator A5031055101 @default.
- W4200289322 creator A5072622783 @default.
- W4200289322 creator A5078953863 @default.
- W4200289322 creator A5080635797 @default.
- W4200289322 date "2021-12-18" @default.
- W4200289322 modified "2023-10-17" @default.
- W4200289322 title "Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America" @default.
- W4200289322 cites W1880076492 @default.
- W4200289322 cites W1886466561 @default.
- W4200289322 cites W1902135804 @default.
- W4200289322 cites W1968556964 @default.
- W4200289322 cites W1971157069 @default.
- W4200289322 cites W1978433555 @default.
- W4200289322 cites W1982754849 @default.
- W4200289322 cites W1984489298 @default.
- W4200289322 cites W1987321182 @default.
- W4200289322 cites W1997436493 @default.
- W4200289322 cites W2008132463 @default.
- W4200289322 cites W2010167289 @default.
- W4200289322 cites W2012329611 @default.
- W4200289322 cites W2031271321 @default.
- W4200289322 cites W2061197341 @default.
- W4200289322 cites W2066078104 @default.
- W4200289322 cites W2084239973 @default.
- W4200289322 cites W2096103565 @default.
- W4200289322 cites W2114034340 @default.
- W4200289322 cites W2116279867 @default.
- W4200289322 cites W2117035657 @default.
- W4200289322 cites W2118840122 @default.
- W4200289322 cites W2120364619 @default.
- W4200289322 cites W2134365322 @default.
- W4200289322 cites W2139530641 @default.
- W4200289322 cites W2140636724 @default.
- W4200289322 cites W2149453409 @default.
- W4200289322 cites W2152059910 @default.
- W4200289322 cites W2175136227 @default.
- W4200289322 cites W2175664213 @default.
- W4200289322 cites W2177989971 @default.
- W4200289322 cites W2179244963 @default.
- W4200289322 cites W2313044384 @default.
- W4200289322 cites W2326751036 @default.
- W4200289322 cites W2332767625 @default.
- W4200289322 cites W2333019244 @default.
- W4200289322 cites W2336374449 @default.
- W4200289322 cites W2341238995 @default.
- W4200289322 cites W2409011011 @default.
- W4200289322 cites W2460318623 @default.
- W4200289322 cites W2569711465 @default.
- W4200289322 cites W2604063047 @default.
- W4200289322 cites W2622161616 @default.
- W4200289322 cites W2751865185 @default.
- W4200289322 cites W2752583985 @default.
- W4200289322 cites W2762695787 @default.
- W4200289322 cites W2768719416 @default.
- W4200289322 cites W2775086366 @default.
- W4200289322 cites W2789320165 @default.
- W4200289322 cites W2796538152 @default.
- W4200289322 cites W2800293565 @default.
- W4200289322 cites W2802008493 @default.
- W4200289322 cites W2802976582 @default.
- W4200289322 cites W2803532708 @default.
- W4200289322 cites W2805537900 @default.
- W4200289322 cites W2911420020 @default.
- W4200289322 cites W2917884411 @default.
- W4200289322 cites W2917934005 @default.
- W4200289322 cites W2923904961 @default.
- W4200289322 cites W2933618896 @default.
- W4200289322 cites W2941538647 @default.
- W4200289322 cites W2944897459 @default.
- W4200289322 cites W2945501254 @default.
- W4200289322 cites W2969815678 @default.
- W4200289322 cites W2978924088 @default.
- W4200289322 cites W2988119997 @default.
- W4200289322 cites W2992907115 @default.
- W4200289322 cites W3014282300 @default.
- W4200289322 cites W3035300814 @default.
- W4200289322 cites W3037471923 @default.
- W4200289322 cites W3045804927 @default.
- W4200289322 cites W3046602074 @default.
- W4200289322 cites W3046823508 @default.
- W4200289322 cites W3082934278 @default.
- W4200289322 cites W3110085825 @default.
- W4200289322 cites W3133236919 @default.
- W4200289322 cites W3133468415 @default.
- W4200289322 cites W3133684719 @default.
- W4200289322 cites W3151670107 @default.
- W4200289322 cites W3198310108 @default.
- W4200289322 cites W4230327503 @default.
- W4200289322 cites W4237191554 @default.
- W4200289322 cites W4245093859 @default.
- W4200289322 cites W4297673277 @default.
- W4200289322 doi "https://doi.org/10.1093/jee/toab247" @default.
- W4200289322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34922393" @default.
- W4200289322 hasPublicationYear "2021" @default.