Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200296905> ?p ?o ?g. }
- W4200296905 endingPage "045010" @default.
- W4200296905 startingPage "045010" @default.
- W4200296905 abstract "Abstract Artificial neural networks (NNs) are trained, based on the numerical database, to predict the no-wall and ideal-wall β N limits, due to onset of the n = 1 ( n is the toroidal mode number) ideal external kink instability, for the HL-2M tokamak. The database is constructed by toroidal computations utilizing both the equilibrium code CHEASE (Lütjens et al 1992 Comput. Phys. Commun. 69 287) and the stability code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). The stability results show that (1) the plasma elongation generally enhances both β N limits, for either positive or negative triangularity plasmas; (2) the effect is more pronounced for positive triangularity plasmas; (3) the computed no-wall β N limit linearly scales with the plasma internal inductance, with the proportionality coefficient ranging between 1 and 5 for HL-2M; (4) the no-wall limit substantially decreases with increasing pressure peaking factor. Furthermore, both the NN model and the convolutional neural network (CNN) model are trained and tested, producing consistent results. The trained NNs predict both the no-wall and ideal-wall limits with as high as 95% accuracy, compared to those directly computed by the stability code. Additional test cases, produced by the Tokamak Simulation Code (Jardin et al 1993 Nucl. Fusion 33 371), also show reasonable performance of the trained NNs, with the relative error being within 10%. The constructed database provides effective references for the future HL-2M operations. The trained NNs can be used as a real-time monitor for disruption prevention in the HL-2M experiments, or serve as part of the integrated modeling tools for ideal kink stability analysis." @default.
- W4200296905 created "2021-12-31" @default.
- W4200296905 creator A5000807861 @default.
- W4200296905 creator A5014314263 @default.
- W4200296905 creator A5019478168 @default.
- W4200296905 creator A5024443317 @default.
- W4200296905 creator A5033656807 @default.
- W4200296905 creator A5034689533 @default.
- W4200296905 creator A5045677223 @default.
- W4200296905 creator A5066005106 @default.
- W4200296905 creator A5066530991 @default.
- W4200296905 creator A5066897318 @default.
- W4200296905 creator A5077807961 @default.
- W4200296905 date "2022-02-16" @default.
- W4200296905 modified "2023-10-16" @default.
- W4200296905 title "Neural network based fast prediction of β <sub> N </sub> limits in HL-2M" @default.
- W4200296905 cites W1974198902 @default.
- W4200296905 cites W1994774681 @default.
- W4200296905 cites W1996912968 @default.
- W4200296905 cites W2007229870 @default.
- W4200296905 cites W2009776912 @default.
- W4200296905 cites W2016954170 @default.
- W4200296905 cites W2017407217 @default.
- W4200296905 cites W2021182757 @default.
- W4200296905 cites W2029374701 @default.
- W4200296905 cites W2031071713 @default.
- W4200296905 cites W2031506742 @default.
- W4200296905 cites W2041277041 @default.
- W4200296905 cites W2055848491 @default.
- W4200296905 cites W2064675550 @default.
- W4200296905 cites W2064937999 @default.
- W4200296905 cites W2066291016 @default.
- W4200296905 cites W2066768985 @default.
- W4200296905 cites W2081116078 @default.
- W4200296905 cites W2081965316 @default.
- W4200296905 cites W2098039657 @default.
- W4200296905 cites W2139653975 @default.
- W4200296905 cites W2241826606 @default.
- W4200296905 cites W2329044810 @default.
- W4200296905 cites W2622651081 @default.
- W4200296905 cites W2792190395 @default.
- W4200296905 cites W2924149006 @default.
- W4200296905 cites W2937394206 @default.
- W4200296905 cites W2963238608 @default.
- W4200296905 cites W2979342888 @default.
- W4200296905 cites W3000848633 @default.
- W4200296905 cites W3004814571 @default.
- W4200296905 cites W3097796199 @default.
- W4200296905 cites W3103997951 @default.
- W4200296905 cites W3106124144 @default.
- W4200296905 cites W3142138323 @default.
- W4200296905 cites W3178286989 @default.
- W4200296905 cites W920268021 @default.
- W4200296905 doi "https://doi.org/10.1088/1361-6587/ac4524" @default.
- W4200296905 hasPublicationYear "2022" @default.
- W4200296905 type Work @default.
- W4200296905 citedByCount "3" @default.
- W4200296905 countsByYear W42002969052022 @default.
- W4200296905 crossrefType "journal-article" @default.
- W4200296905 hasAuthorship W4200296905A5000807861 @default.
- W4200296905 hasAuthorship W4200296905A5014314263 @default.
- W4200296905 hasAuthorship W4200296905A5019478168 @default.
- W4200296905 hasAuthorship W4200296905A5024443317 @default.
- W4200296905 hasAuthorship W4200296905A5033656807 @default.
- W4200296905 hasAuthorship W4200296905A5034689533 @default.
- W4200296905 hasAuthorship W4200296905A5045677223 @default.
- W4200296905 hasAuthorship W4200296905A5066005106 @default.
- W4200296905 hasAuthorship W4200296905A5066530991 @default.
- W4200296905 hasAuthorship W4200296905A5066897318 @default.
- W4200296905 hasAuthorship W4200296905A5077807961 @default.
- W4200296905 hasConcept C111472728 @default.
- W4200296905 hasConcept C11413529 @default.
- W4200296905 hasConcept C116515362 @default.
- W4200296905 hasConcept C121332964 @default.
- W4200296905 hasConcept C134306372 @default.
- W4200296905 hasConcept C138885662 @default.
- W4200296905 hasConcept C15001198 @default.
- W4200296905 hasConcept C151201525 @default.
- W4200296905 hasConcept C154945302 @default.
- W4200296905 hasConcept C177264268 @default.
- W4200296905 hasConcept C185544564 @default.
- W4200296905 hasConcept C199360897 @default.
- W4200296905 hasConcept C207821765 @default.
- W4200296905 hasConcept C2776639384 @default.
- W4200296905 hasConcept C2776760102 @default.
- W4200296905 hasConcept C30475298 @default.
- W4200296905 hasConcept C33923547 @default.
- W4200296905 hasConcept C41008148 @default.
- W4200296905 hasConcept C50644808 @default.
- W4200296905 hasConcept C57879066 @default.
- W4200296905 hasConcept C82706917 @default.
- W4200296905 hasConceptScore W4200296905C111472728 @default.
- W4200296905 hasConceptScore W4200296905C11413529 @default.
- W4200296905 hasConceptScore W4200296905C116515362 @default.
- W4200296905 hasConceptScore W4200296905C121332964 @default.
- W4200296905 hasConceptScore W4200296905C134306372 @default.
- W4200296905 hasConceptScore W4200296905C138885662 @default.
- W4200296905 hasConceptScore W4200296905C15001198 @default.