Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200302671> ?p ?o ?g. }
- W4200302671 abstract "Protein design plays an important role in recent medical advances from antibody therapy to vaccine design. Typically, exhaustive mutational screens or directed evolution experiments are used for the identification of the best design or for improvements to the wild-type variant. Even with a high-throughput screening on pooled libraries and Next-Generation Sequencing to boost the scale of read-outs, surveying all the variants with combinatorial mutations for their empirical fitness scores is still of magnitudes beyond the capacity of existing experimental settings. To tackle this challenge, in-silico approaches using machine learning to predict the fitness of novel variants based on a subset of empirical measurements are now employed. These machine learning models turn out to be useful in many cases, with the premise that the experimentally determined fitness scores and the amino-acid descriptors of the models are informative. The machine learning models can guide the search for the highest fitness variants, resolve complex epistatic relationships, and highlight bio-physical rules for protein folding. Using machine learning-guided approaches, researchers can build more focused libraries, thus relieving themselves from labor-intensive screens and fast-tracking the optimization process. Here, we describe the current advances in massive-scale variant screens, and how machine learning and mutagenesis strategies can be integrated to accelerate protein engineering. More specifically, we examine strategies to make screens more economical, informative, and effective in discovery of useful variants." @default.
- W4200302671 created "2021-12-31" @default.
- W4200302671 creator A5031235292 @default.
- W4200302671 creator A5063230141 @default.
- W4200302671 date "2021-12-01" @default.
- W4200302671 modified "2023-09-30" @default.
- W4200302671 title "Facilitating Machine Learning‐Guided Protein Engineering with Smart Library Design and Massively Parallel Assays" @default.
- W4200302671 cites W1954202239 @default.
- W4200302671 cites W1968342244 @default.
- W4200302671 cites W2014159272 @default.
- W4200302671 cites W2017507499 @default.
- W4200302671 cites W2038201483 @default.
- W4200302671 cites W2060588922 @default.
- W4200302671 cites W2096352858 @default.
- W4200302671 cites W2144779133 @default.
- W4200302671 cites W2271163371 @default.
- W4200302671 cites W2346018449 @default.
- W4200302671 cites W2438537421 @default.
- W4200302671 cites W2483469645 @default.
- W4200302671 cites W2516527259 @default.
- W4200302671 cites W2542621333 @default.
- W4200302671 cites W2548003600 @default.
- W4200302671 cites W2561754210 @default.
- W4200302671 cites W2593384078 @default.
- W4200302671 cites W2744336424 @default.
- W4200302671 cites W2752403657 @default.
- W4200302671 cites W2753013469 @default.
- W4200302671 cites W2765094271 @default.
- W4200302671 cites W2765744127 @default.
- W4200302671 cites W2772524563 @default.
- W4200302671 cites W2791796577 @default.
- W4200302671 cites W2795963939 @default.
- W4200302671 cites W2803317672 @default.
- W4200302671 cites W2885278423 @default.
- W4200302671 cites W2890223884 @default.
- W4200302671 cites W2906596870 @default.
- W4200302671 cites W2946741946 @default.
- W4200302671 cites W2952214667 @default.
- W4200302671 cites W2952785685 @default.
- W4200302671 cites W2952800550 @default.
- W4200302671 cites W2953176058 @default.
- W4200302671 cites W2956569764 @default.
- W4200302671 cites W2961875637 @default.
- W4200302671 cites W2971227267 @default.
- W4200302671 cites W2972979941 @default.
- W4200302671 cites W2979343028 @default.
- W4200302671 cites W2980298350 @default.
- W4200302671 cites W2987707723 @default.
- W4200302671 cites W2987965949 @default.
- W4200302671 cites W2995106228 @default.
- W4200302671 cites W2995651968 @default.
- W4200302671 cites W2997244915 @default.
- W4200302671 cites W2998499403 @default.
- W4200302671 cites W2998731295 @default.
- W4200302671 cites W2998737920 @default.
- W4200302671 cites W2999290641 @default.
- W4200302671 cites W2999840604 @default.
- W4200302671 cites W3013900499 @default.
- W4200302671 cites W3014805132 @default.
- W4200302671 cites W3015295562 @default.
- W4200302671 cites W3027322274 @default.
- W4200302671 cites W3029194094 @default.
- W4200302671 cites W3034479940 @default.
- W4200302671 cites W3037592148 @default.
- W4200302671 cites W3043660595 @default.
- W4200302671 cites W3044500453 @default.
- W4200302671 cites W3047799377 @default.
- W4200302671 cites W3048825106 @default.
- W4200302671 cites W3067819707 @default.
- W4200302671 cites W3082096568 @default.
- W4200302671 cites W3091616527 @default.
- W4200302671 cites W3092737886 @default.
- W4200302671 cites W3092862293 @default.
- W4200302671 cites W3098238469 @default.
- W4200302671 cites W3098471978 @default.
- W4200302671 cites W3100159300 @default.
- W4200302671 cites W3102583847 @default.
- W4200302671 cites W3107408030 @default.
- W4200302671 cites W3112890772 @default.
- W4200302671 cites W3120180752 @default.
- W4200302671 cites W3125782153 @default.
- W4200302671 cites W3126990780 @default.
- W4200302671 cites W3127426316 @default.
- W4200302671 cites W3129998905 @default.
- W4200302671 cites W3132758757 @default.
- W4200302671 cites W3132864675 @default.
- W4200302671 cites W3133458480 @default.
- W4200302671 cites W3134186384 @default.
- W4200302671 cites W3140314129 @default.
- W4200302671 cites W3142775443 @default.
- W4200302671 cites W3144239152 @default.
- W4200302671 cites W3144701084 @default.
- W4200302671 cites W3146944767 @default.
- W4200302671 cites W3154275519 @default.
- W4200302671 cites W3156522942 @default.
- W4200302671 cites W3163970098 @default.
- W4200302671 cites W3174716159 @default.
- W4200302671 cites W3176264499 @default.
- W4200302671 cites W3176355504 @default.
- W4200302671 cites W3177571920 @default.