Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200306792> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4200306792 endingPage "60" @default.
- W4200306792 startingPage "49" @default.
- W4200306792 abstract "The implementation of robotic systems and digitalization in agriculture are important tasks today. In this paper, the possibility of using pattern recognition and machine learning methods as a computer model of an agricultural robot for harvesting is considered. The grading of tomato fruits can be classified based on their ripeness according to their life cycles, which can be identified by their color: green in the growing stage, yellow in the pre-ripening stage, and red when ripe. Conventional skill-based methods cannot meet the exact selection criteria for modern production management in the agricultural sector as they are time-consuming and of low accuracy. Automatic feature extraction behavior using machine learning is most effective in image classification and recognition tasks. Thus, the article presents the results of a study on the recognition of ripe tomato fruits by a robotic system, carried out within the framework of the grant project of the Ministry of Education and Science of the Republic of Kazakhstan AP08857573 and implemented classical algorithms based on the HSV color model and color segmentation using the k-means algorithm as comparative algorithms and based on machine learning, a universal intelligent tomato classification system is proposed for practical use using Yolo 5. This study aims to provide an inexpensive solution with the best performance and accuracy for assessing tomato ripeness. The results are collected in terms of accuracy, loss curves and confusion matrix. The results showed that the proposed model outperforms other machine learning (ML) methods used by researchers for tomato classification problems, providing 99% accuracy." @default.
- W4200306792 created "2021-12-31" @default.
- W4200306792 creator A5007905297 @default.
- W4200306792 creator A5018754948 @default.
- W4200306792 creator A5044939412 @default.
- W4200306792 creator A5054949129 @default.
- W4200306792 creator A5067140487 @default.
- W4200306792 creator A5084735412 @default.
- W4200306792 creator A9999999999 @default.
- W4200306792 date "2021-12-15" @default.
- W4200306792 modified "2023-10-15" @default.
- W4200306792 title "Tomato maturity recognition using YOLOV 5 machine learning" @default.
- W4200306792 doi "https://doi.org/10.47533/2020.1606-146x.116" @default.
- W4200306792 hasPublicationYear "2021" @default.
- W4200306792 type Work @default.
- W4200306792 citedByCount "0" @default.
- W4200306792 crossrefType "journal-article" @default.
- W4200306792 hasAuthorship W4200306792A5007905297 @default.
- W4200306792 hasAuthorship W4200306792A5018754948 @default.
- W4200306792 hasAuthorship W4200306792A5044939412 @default.
- W4200306792 hasAuthorship W4200306792A5054949129 @default.
- W4200306792 hasAuthorship W4200306792A5067140487 @default.
- W4200306792 hasAuthorship W4200306792A5084735412 @default.
- W4200306792 hasAuthorship W4200306792A9999999999 @default.
- W4200306792 hasBestOaLocation W42003067921 @default.
- W4200306792 hasConcept C119857082 @default.
- W4200306792 hasConcept C138602881 @default.
- W4200306792 hasConcept C154945302 @default.
- W4200306792 hasConcept C172353545 @default.
- W4200306792 hasConcept C185592680 @default.
- W4200306792 hasConcept C2780393073 @default.
- W4200306792 hasConcept C31903555 @default.
- W4200306792 hasConcept C41008148 @default.
- W4200306792 hasConcept C5339829 @default.
- W4200306792 hasConcept C89600930 @default.
- W4200306792 hasConceptScore W4200306792C119857082 @default.
- W4200306792 hasConceptScore W4200306792C138602881 @default.
- W4200306792 hasConceptScore W4200306792C154945302 @default.
- W4200306792 hasConceptScore W4200306792C172353545 @default.
- W4200306792 hasConceptScore W4200306792C185592680 @default.
- W4200306792 hasConceptScore W4200306792C2780393073 @default.
- W4200306792 hasConceptScore W4200306792C31903555 @default.
- W4200306792 hasConceptScore W4200306792C41008148 @default.
- W4200306792 hasConceptScore W4200306792C5339829 @default.
- W4200306792 hasConceptScore W4200306792C89600930 @default.
- W4200306792 hasIssue "4" @default.
- W4200306792 hasLocation W42003067921 @default.
- W4200306792 hasOpenAccess W4200306792 @default.
- W4200306792 hasPrimaryLocation W42003067921 @default.
- W4200306792 hasRelatedWork W3103801318 @default.
- W4200306792 hasRelatedWork W3112940371 @default.
- W4200306792 hasRelatedWork W4200306792 @default.
- W4200306792 hasRelatedWork W4225256125 @default.
- W4200306792 hasRelatedWork W4226401448 @default.
- W4200306792 hasRelatedWork W4231994957 @default.
- W4200306792 hasRelatedWork W4281386417 @default.
- W4200306792 hasRelatedWork W4281645081 @default.
- W4200306792 hasRelatedWork W4361795583 @default.
- W4200306792 hasRelatedWork W3124024302 @default.
- W4200306792 hasVolume "82" @default.
- W4200306792 isParatext "false" @default.
- W4200306792 isRetracted "false" @default.
- W4200306792 workType "article" @default.