Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200307965> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4200307965 abstract "Magnetic resonance is the imaging method that stands out in the evaluation of textures and diseases related to brain. The information about metabolic, biochemical and hemodynamic structure of the brain is obtained by magnetic resonance imaging. Attention Deficit Hyperactivity Disorder (ADHD) is a psychiatric disease and, if not treated, its effects may spread over all lifetime and cause significant academic, social, and psychiatric problems. High-accuracy and objective tools need to be developed for classification of ADHD. In this study, we present machine learning (ML) and deep learning (DL) based approaches for the classification of MR Images collected from ADHD patients. We generate a new 2D texture from 3-D structural magnetic resonance image by combining slices where gray and white matter clearly displayed. In the first approach, we extract Haralick texture based features, and HOG features and classify ADHD using ML methods such as Decision Tree, K nearest neighbor, Naive Bayes, Logistic Regression, and Support Vector Machine. In the DL approach, we trained four Convolutional Neural Network (CNN) structures (AlexNet, VGGNet, ResNet and GoogleNet) for ADHD classification using the 2-D texture images. Classification performance obtained with ResNet architecture in characterizing new texture is 100 % accuracy, 100 % sensitivity, 100 % specificity." @default.
- W4200307965 created "2021-12-31" @default.
- W4200307965 creator A5012672901 @default.
- W4200307965 creator A5021700660 @default.
- W4200307965 date "2021-11-04" @default.
- W4200307965 modified "2023-10-04" @default.
- W4200307965 title "Deep Learning Approach Versus Traditional Machine Learning for ADHD Classification" @default.
- W4200307965 cites W1907465059 @default.
- W4200307965 cites W1995157367 @default.
- W4200307965 cites W2118023920 @default.
- W4200307965 cites W2168490582 @default.
- W4200307965 cites W2194775991 @default.
- W4200307965 cites W247192705 @default.
- W4200307965 cites W2795016359 @default.
- W4200307965 cites W2944352397 @default.
- W4200307965 cites W2946763314 @default.
- W4200307965 cites W2977345440 @default.
- W4200307965 cites W2995908317 @default.
- W4200307965 cites W3003265860 @default.
- W4200307965 doi "https://doi.org/10.1109/tiptekno53239.2021.9632940" @default.
- W4200307965 hasPublicationYear "2021" @default.
- W4200307965 type Work @default.
- W4200307965 citedByCount "2" @default.
- W4200307965 countsByYear W42003079652022 @default.
- W4200307965 crossrefType "proceedings-article" @default.
- W4200307965 hasAuthorship W4200307965A5012672901 @default.
- W4200307965 hasAuthorship W4200307965A5021700660 @default.
- W4200307965 hasConcept C108583219 @default.
- W4200307965 hasConcept C115961682 @default.
- W4200307965 hasConcept C118552586 @default.
- W4200307965 hasConcept C119857082 @default.
- W4200307965 hasConcept C12267149 @default.
- W4200307965 hasConcept C126838900 @default.
- W4200307965 hasConcept C143409427 @default.
- W4200307965 hasConcept C153180895 @default.
- W4200307965 hasConcept C154945302 @default.
- W4200307965 hasConcept C15744967 @default.
- W4200307965 hasConcept C169258074 @default.
- W4200307965 hasConcept C2780783007 @default.
- W4200307965 hasConcept C2944601119 @default.
- W4200307965 hasConcept C41008148 @default.
- W4200307965 hasConcept C50644808 @default.
- W4200307965 hasConcept C52001869 @default.
- W4200307965 hasConcept C71924100 @default.
- W4200307965 hasConcept C75294576 @default.
- W4200307965 hasConcept C81363708 @default.
- W4200307965 hasConcept C84525736 @default.
- W4200307965 hasConceptScore W4200307965C108583219 @default.
- W4200307965 hasConceptScore W4200307965C115961682 @default.
- W4200307965 hasConceptScore W4200307965C118552586 @default.
- W4200307965 hasConceptScore W4200307965C119857082 @default.
- W4200307965 hasConceptScore W4200307965C12267149 @default.
- W4200307965 hasConceptScore W4200307965C126838900 @default.
- W4200307965 hasConceptScore W4200307965C143409427 @default.
- W4200307965 hasConceptScore W4200307965C153180895 @default.
- W4200307965 hasConceptScore W4200307965C154945302 @default.
- W4200307965 hasConceptScore W4200307965C15744967 @default.
- W4200307965 hasConceptScore W4200307965C169258074 @default.
- W4200307965 hasConceptScore W4200307965C2780783007 @default.
- W4200307965 hasConceptScore W4200307965C2944601119 @default.
- W4200307965 hasConceptScore W4200307965C41008148 @default.
- W4200307965 hasConceptScore W4200307965C50644808 @default.
- W4200307965 hasConceptScore W4200307965C52001869 @default.
- W4200307965 hasConceptScore W4200307965C71924100 @default.
- W4200307965 hasConceptScore W4200307965C75294576 @default.
- W4200307965 hasConceptScore W4200307965C81363708 @default.
- W4200307965 hasConceptScore W4200307965C84525736 @default.
- W4200307965 hasLocation W42003079651 @default.
- W4200307965 hasOpenAccess W4200307965 @default.
- W4200307965 hasPrimaryLocation W42003079651 @default.
- W4200307965 hasRelatedWork W2985924212 @default.
- W4200307965 hasRelatedWork W4223564025 @default.
- W4200307965 hasRelatedWork W4285407528 @default.
- W4200307965 hasRelatedWork W4289812785 @default.
- W4200307965 hasRelatedWork W4313070894 @default.
- W4200307965 hasRelatedWork W4321636153 @default.
- W4200307965 hasRelatedWork W4377964522 @default.
- W4200307965 hasRelatedWork W4383746529 @default.
- W4200307965 hasRelatedWork W4384345534 @default.
- W4200307965 hasRelatedWork W4387055688 @default.
- W4200307965 isParatext "false" @default.
- W4200307965 isRetracted "false" @default.
- W4200307965 workType "article" @default.