Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200309095> ?p ?o ?g. }
- W4200309095 endingPage "105176" @default.
- W4200309095 startingPage "105176" @default.
- W4200309095 abstract "The coronavirus disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is consistently causing profound wounds in the global healthcare system due to its increased transmissibility. Currently, there is an urgent unmet need to identify the underlying dynamic associations among COVID-19 patients and distinguish patient subgroups with common clinical profiles towards the development of robust classifiers for ICU admission and mortality. To address this need, we propose a four step pipeline which: (i) enhances the quality of multiple timeseries clinical data through an automated data curation workflow, (ii) deploys Dynamic Bayesian Networks (DBNs) for the detection of features with increased connectivity based on dynamic association analysis across multiple points, (iii) utilizes Self Organizing Maps (SOMs) and trajectory analysis for the early identification of COVID-19 patients with common clinical profiles, and (iv) trains robust multiple additive regression trees (MART) for ICU admission and mortality classification based on the extracted homogeneous clusters, to identify risk factors and biomarkers for disease progression. The contribution of the extracted clusters and the dynamically associated clinical data improved the classification performance for ICU admission to sensitivity 0.83 and specificity 0.83, and for mortality to sensitivity 0.74 and specificity 0.76. Additional information was included to enhance the performance of the classifiers yielding an increase by 4% in sensitivity and specificity for mortality. According to the risk factor analysis, the number of lymphocytes, SatO2, PO2/FiO2, and O2 supply type were highlighted as risk factors for ICU admission and the percentage of neutrophils and lymphocytes, PO2/FiO2, LDH, and ALP for mortality, among others. To our knowledge, this is the first study that combines dynamic modeling with clustering analysis to identify homogeneous groups of COVID-19 patients towards the development of robust classifiers for ICU admission and mortality." @default.
- W4200309095 created "2021-12-31" @default.
- W4200309095 creator A5012371603 @default.
- W4200309095 creator A5015528037 @default.
- W4200309095 creator A5029773758 @default.
- W4200309095 creator A5037813012 @default.
- W4200309095 creator A5048191108 @default.
- W4200309095 creator A5052002130 @default.
- W4200309095 creator A5056134447 @default.
- W4200309095 creator A5067569191 @default.
- W4200309095 creator A5074234790 @default.
- W4200309095 creator A5080267739 @default.
- W4200309095 creator A5087296552 @default.
- W4200309095 date "2022-02-01" @default.
- W4200309095 modified "2023-10-18" @default.
- W4200309095 title "ICU admission and mortality classifiers for COVID-19 patients based on subgroups of dynamically associated profiles across multiple timepoints" @default.
- W4200309095 cites W1965961207 @default.
- W4200309095 cites W2012615305 @default.
- W4200309095 cites W2090330784 @default.
- W4200309095 cites W2108579152 @default.
- W4200309095 cites W2121236536 @default.
- W4200309095 cites W2147200107 @default.
- W4200309095 cites W2502867774 @default.
- W4200309095 cites W2565618151 @default.
- W4200309095 cites W2794413384 @default.
- W4200309095 cites W2921039670 @default.
- W4200309095 cites W2921518676 @default.
- W4200309095 cites W3003090043 @default.
- W4200309095 cites W3008028633 @default.
- W4200309095 cites W3008090866 @default.
- W4200309095 cites W3011922644 @default.
- W4200309095 cites W3013547516 @default.
- W4200309095 cites W3016535995 @default.
- W4200309095 cites W3025528269 @default.
- W4200309095 cites W3026609628 @default.
- W4200309095 cites W3026764413 @default.
- W4200309095 cites W3028583791 @default.
- W4200309095 cites W3030833760 @default.
- W4200309095 cites W3031876060 @default.
- W4200309095 cites W3034312608 @default.
- W4200309095 cites W3035321136 @default.
- W4200309095 cites W3037780771 @default.
- W4200309095 cites W3039912799 @default.
- W4200309095 cites W3088554120 @default.
- W4200309095 cites W3091825062 @default.
- W4200309095 cites W3091967082 @default.
- W4200309095 cites W3112379720 @default.
- W4200309095 cites W3117227522 @default.
- W4200309095 cites W3119080408 @default.
- W4200309095 cites W3122838760 @default.
- W4200309095 cites W3126570147 @default.
- W4200309095 cites W3137264488 @default.
- W4200309095 cites W3162199380 @default.
- W4200309095 cites W3163982507 @default.
- W4200309095 cites W3185581925 @default.
- W4200309095 cites W3194018622 @default.
- W4200309095 doi "https://doi.org/10.1016/j.compbiomed.2021.105176" @default.
- W4200309095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35007991" @default.
- W4200309095 hasPublicationYear "2022" @default.
- W4200309095 type Work @default.
- W4200309095 citedByCount "1" @default.
- W4200309095 countsByYear W42003090952023 @default.
- W4200309095 crossrefType "journal-article" @default.
- W4200309095 hasAuthorship W4200309095A5012371603 @default.
- W4200309095 hasAuthorship W4200309095A5015528037 @default.
- W4200309095 hasAuthorship W4200309095A5029773758 @default.
- W4200309095 hasAuthorship W4200309095A5037813012 @default.
- W4200309095 hasAuthorship W4200309095A5048191108 @default.
- W4200309095 hasAuthorship W4200309095A5052002130 @default.
- W4200309095 hasAuthorship W4200309095A5056134447 @default.
- W4200309095 hasAuthorship W4200309095A5067569191 @default.
- W4200309095 hasAuthorship W4200309095A5074234790 @default.
- W4200309095 hasAuthorship W4200309095A5080267739 @default.
- W4200309095 hasAuthorship W4200309095A5087296552 @default.
- W4200309095 hasBestOaLocation W42003090952 @default.
- W4200309095 hasConcept C119857082 @default.
- W4200309095 hasConcept C126322002 @default.
- W4200309095 hasConcept C154945302 @default.
- W4200309095 hasConcept C177713679 @default.
- W4200309095 hasConcept C194828623 @default.
- W4200309095 hasConcept C2779134260 @default.
- W4200309095 hasConcept C3008058167 @default.
- W4200309095 hasConcept C41008148 @default.
- W4200309095 hasConcept C524204448 @default.
- W4200309095 hasConcept C71924100 @default.
- W4200309095 hasConceptScore W4200309095C119857082 @default.
- W4200309095 hasConceptScore W4200309095C126322002 @default.
- W4200309095 hasConceptScore W4200309095C154945302 @default.
- W4200309095 hasConceptScore W4200309095C177713679 @default.
- W4200309095 hasConceptScore W4200309095C194828623 @default.
- W4200309095 hasConceptScore W4200309095C2779134260 @default.
- W4200309095 hasConceptScore W4200309095C3008058167 @default.
- W4200309095 hasConceptScore W4200309095C41008148 @default.
- W4200309095 hasConceptScore W4200309095C524204448 @default.
- W4200309095 hasConceptScore W4200309095C71924100 @default.
- W4200309095 hasFunder F4320327859 @default.
- W4200309095 hasLocation W42003090951 @default.
- W4200309095 hasLocation W42003090952 @default.