Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200310034> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4200310034 endingPage "1237" @default.
- W4200310034 startingPage "1229" @default.
- W4200310034 abstract "The estimate ultimate recovery (EUR) of shale gas in individual well is affected by many factors so that it is difficult to predict accurately. Data-driven methods based on geological and engineering parameters are currently one of the mainstream methods for predicting EUR. However, the importance of early data from gas wells is often overlooked. Therefore, this research set out to use early data, including production and flowback rate data, to develop machine learning models. With the ability to analyze the data by machine learning, the controlling factors on EUR have been analyzed quantitatively. Four schemes have been designed to develop the model, and various machine learning techniques (K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT)) were applied to process the complex patterns in the data. The results show that, except 30-day flowback rate, the most important factor for EUR is the early production data. The relationship between the early flowback rate and EUR is poor. It is not enough to predict EUR accurately provided that only using the flowback rate data. Good prediction results have been obtained by choosing the most important factors. Among the four algorithms, SVM is considered to be the most reliable model because it is suitable for small data sets and performs well in dealing with nonlinear relationships between variables. The mean absolute percentage error is 13.41% in the test set 49 wells, which can be used as the optimal algorithm for EUR prediction only based on early data." @default.
- W4200310034 created "2021-12-31" @default.
- W4200310034 creator A5036275885 @default.
- W4200310034 creator A5050019300 @default.
- W4200310034 creator A5059827147 @default.
- W4200310034 date "2022-11-01" @default.
- W4200310034 modified "2023-10-18" @default.
- W4200310034 title "Development of shale gas production prediction models based on machine learning using early data" @default.
- W4200310034 cites W1642256448 @default.
- W4200310034 cites W1678356000 @default.
- W4200310034 cites W1931166044 @default.
- W4200310034 cites W1970037416 @default.
- W4200310034 cites W1988195734 @default.
- W4200310034 cites W2048760145 @default.
- W4200310034 cites W2058731966 @default.
- W4200310034 cites W2070493638 @default.
- W4200310034 cites W2101664201 @default.
- W4200310034 cites W2118142823 @default.
- W4200310034 cites W2119038383 @default.
- W4200310034 cites W2122111042 @default.
- W4200310034 cites W2153637311 @default.
- W4200310034 cites W2155261478 @default.
- W4200310034 cites W2302670581 @default.
- W4200310034 cites W2324688244 @default.
- W4200310034 cites W2406593126 @default.
- W4200310034 cites W2413796914 @default.
- W4200310034 cites W2553873760 @default.
- W4200310034 cites W2593394805 @default.
- W4200310034 cites W2761374201 @default.
- W4200310034 cites W2763672660 @default.
- W4200310034 cites W2783009195 @default.
- W4200310034 cites W2801869605 @default.
- W4200310034 cites W2885818598 @default.
- W4200310034 cites W2980318039 @default.
- W4200310034 cites W3000089275 @default.
- W4200310034 cites W3103120337 @default.
- W4200310034 cites W3135068449 @default.
- W4200310034 cites W3192680095 @default.
- W4200310034 cites W3195387025 @default.
- W4200310034 cites W4213272391 @default.
- W4200310034 doi "https://doi.org/10.1016/j.egyr.2021.12.040" @default.
- W4200310034 hasPublicationYear "2022" @default.
- W4200310034 type Work @default.
- W4200310034 citedByCount "25" @default.
- W4200310034 countsByYear W42003100342022 @default.
- W4200310034 countsByYear W42003100342023 @default.
- W4200310034 crossrefType "journal-article" @default.
- W4200310034 hasAuthorship W4200310034A5036275885 @default.
- W4200310034 hasAuthorship W4200310034A5050019300 @default.
- W4200310034 hasAuthorship W4200310034A5059827147 @default.
- W4200310034 hasBestOaLocation W42003100341 @default.
- W4200310034 hasConcept C119857082 @default.
- W4200310034 hasConcept C12267149 @default.
- W4200310034 hasConcept C124101348 @default.
- W4200310034 hasConcept C154945302 @default.
- W4200310034 hasConcept C169258074 @default.
- W4200310034 hasConcept C41008148 @default.
- W4200310034 hasConcept C45942800 @default.
- W4200310034 hasConcept C46686674 @default.
- W4200310034 hasConcept C58489278 @default.
- W4200310034 hasConcept C70153297 @default.
- W4200310034 hasConcept C84525736 @default.
- W4200310034 hasConceptScore W4200310034C119857082 @default.
- W4200310034 hasConceptScore W4200310034C12267149 @default.
- W4200310034 hasConceptScore W4200310034C124101348 @default.
- W4200310034 hasConceptScore W4200310034C154945302 @default.
- W4200310034 hasConceptScore W4200310034C169258074 @default.
- W4200310034 hasConceptScore W4200310034C41008148 @default.
- W4200310034 hasConceptScore W4200310034C45942800 @default.
- W4200310034 hasConceptScore W4200310034C46686674 @default.
- W4200310034 hasConceptScore W4200310034C58489278 @default.
- W4200310034 hasConceptScore W4200310034C70153297 @default.
- W4200310034 hasConceptScore W4200310034C84525736 @default.
- W4200310034 hasFunder F4320321570 @default.
- W4200310034 hasLocation W42003100341 @default.
- W4200310034 hasLocation W42003100342 @default.
- W4200310034 hasOpenAccess W4200310034 @default.
- W4200310034 hasPrimaryLocation W42003100341 @default.
- W4200310034 hasRelatedWork W3092610851 @default.
- W4200310034 hasRelatedWork W3100297620 @default.
- W4200310034 hasRelatedWork W3126325819 @default.
- W4200310034 hasRelatedWork W3201348321 @default.
- W4200310034 hasRelatedWork W3210696866 @default.
- W4200310034 hasRelatedWork W4293069612 @default.
- W4200310034 hasRelatedWork W4296081764 @default.
- W4200310034 hasRelatedWork W4378176178 @default.
- W4200310034 hasRelatedWork W4382701299 @default.
- W4200310034 hasRelatedWork W4385728794 @default.
- W4200310034 hasVolume "8" @default.
- W4200310034 isParatext "false" @default.
- W4200310034 isRetracted "false" @default.
- W4200310034 workType "article" @default.