Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200310129> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4200310129 abstract "Abstract Clinical data are increasingly being mined to derive new medical knowledge with a goal of enabling greater diagnostic precision, better-personalized therapeutic regimens, improved clinical outcomes and more efficient utilization of health-care resources. However, clinical data are often only available at irregular intervals that vary between patients and type of data, with entries often being unmeasured or unknown. As a result, missing data often represent one of the major impediments to optimal knowledge derivation from clinical data. The Data Analytics Challenge on Missing data Imputation (DACMI) presented a shared clinical dataset with ground truth for evaluating and advancing the state of the art in imputing missing data for clinical time series. We extracted 13 commonly measured blood laboratory tests. To evaluate the imputation performance, we randomly removed one recorded result per laboratory test per patient admission and used them as the ground truth. DACMI is the first shared-task challenge on clinical time series imputation to our best knowledge. The challenge attracted 12 international teams spanning three continents across multiple industries and academia. The evaluation outcome suggests that competitive machine learning and statistical models (e.g. LightGBM, MICE and XGBoost) coupled with carefully engineered temporal and cross-sectional features can achieve strong imputation performance. However, care needs to be taken to prevent overblown model complexity. The challenge participating systems collectively experimented with a wide range of machine learning and probabilistic algorithms to combine temporal imputation and cross-sectional imputation, and their design principles will inform future efforts to better model clinical missing data." @default.
- W4200310129 created "2021-12-31" @default.
- W4200310129 creator A5084810789 @default.
- W4200310129 date "2021-12-09" @default.
- W4200310129 modified "2023-10-16" @default.
- W4200310129 title "Evaluating the state of the art in missing data imputation for clinical data" @default.
- W4200310129 cites W2056967673 @default.
- W4200310129 cites W2064186732 @default.
- W4200310129 cites W2101019427 @default.
- W4200310129 cites W2115098571 @default.
- W4200310129 cites W2146130798 @default.
- W4200310129 cites W2278608073 @default.
- W4200310129 cites W2396881363 @default.
- W4200310129 cites W2468477102 @default.
- W4200310129 cites W2742491462 @default.
- W4200310129 cites W2771817472 @default.
- W4200310129 cites W2772803673 @default.
- W4200310129 cites W2802561155 @default.
- W4200310129 cites W2964010366 @default.
- W4200310129 cites W3009943557 @default.
- W4200310129 cites W3023896219 @default.
- W4200310129 cites W3033108443 @default.
- W4200310129 cites W3046991059 @default.
- W4200310129 cites W3080826732 @default.
- W4200310129 cites W3092903641 @default.
- W4200310129 cites W3102476541 @default.
- W4200310129 cites W3109682927 @default.
- W4200310129 cites W3202638211 @default.
- W4200310129 doi "https://doi.org/10.1093/bib/bbab489" @default.
- W4200310129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34882223" @default.
- W4200310129 hasPublicationYear "2021" @default.
- W4200310129 type Work @default.
- W4200310129 citedByCount "28" @default.
- W4200310129 countsByYear W42003101292022 @default.
- W4200310129 countsByYear W42003101292023 @default.
- W4200310129 crossrefType "journal-article" @default.
- W4200310129 hasAuthorship W4200310129A5084810789 @default.
- W4200310129 hasBestOaLocation W42003101291 @default.
- W4200310129 hasConcept C119857082 @default.
- W4200310129 hasConcept C124101348 @default.
- W4200310129 hasConcept C142724271 @default.
- W4200310129 hasConcept C146849305 @default.
- W4200310129 hasConcept C154945302 @default.
- W4200310129 hasConcept C163763905 @default.
- W4200310129 hasConcept C41008148 @default.
- W4200310129 hasConcept C49937458 @default.
- W4200310129 hasConcept C58041806 @default.
- W4200310129 hasConcept C71924100 @default.
- W4200310129 hasConcept C75684735 @default.
- W4200310129 hasConcept C9357733 @default.
- W4200310129 hasConceptScore W4200310129C119857082 @default.
- W4200310129 hasConceptScore W4200310129C124101348 @default.
- W4200310129 hasConceptScore W4200310129C142724271 @default.
- W4200310129 hasConceptScore W4200310129C146849305 @default.
- W4200310129 hasConceptScore W4200310129C154945302 @default.
- W4200310129 hasConceptScore W4200310129C163763905 @default.
- W4200310129 hasConceptScore W4200310129C41008148 @default.
- W4200310129 hasConceptScore W4200310129C49937458 @default.
- W4200310129 hasConceptScore W4200310129C58041806 @default.
- W4200310129 hasConceptScore W4200310129C71924100 @default.
- W4200310129 hasConceptScore W4200310129C75684735 @default.
- W4200310129 hasConceptScore W4200310129C9357733 @default.
- W4200310129 hasFunder F4320337372 @default.
- W4200310129 hasIssue "1" @default.
- W4200310129 hasLocation W42003101291 @default.
- W4200310129 hasLocation W42003101292 @default.
- W4200310129 hasLocation W42003101293 @default.
- W4200310129 hasOpenAccess W4200310129 @default.
- W4200310129 hasPrimaryLocation W42003101291 @default.
- W4200310129 hasRelatedWork W1513289763 @default.
- W4200310129 hasRelatedWork W1973721774 @default.
- W4200310129 hasRelatedWork W2316243772 @default.
- W4200310129 hasRelatedWork W2541565311 @default.
- W4200310129 hasRelatedWork W2751555317 @default.
- W4200310129 hasRelatedWork W2784019465 @default.
- W4200310129 hasRelatedWork W2900766238 @default.
- W4200310129 hasRelatedWork W3049453136 @default.
- W4200310129 hasRelatedWork W569810835 @default.
- W4200310129 hasRelatedWork W2112497756 @default.
- W4200310129 hasVolume "23" @default.
- W4200310129 isParatext "false" @default.
- W4200310129 isRetracted "false" @default.
- W4200310129 workType "article" @default.