Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200310367> ?p ?o ?g. }
- W4200310367 endingPage "106665" @default.
- W4200310367 startingPage "106665" @default.
- W4200310367 abstract "Due to its multimode and dispersive nature, ultrasonic guided waves (UGWs) usually consist of overlapped wave packets, which challenge accurate bone characterization. To overcome this obstacle, a classic idea is to separate individual modes and to extract the corresponding dispersion curves. Reported single-channel mode separation algorithms mainly focused on offering a time-frequency representation (TFR) where the energy distributions of individual modes were apart from each other. However, such approaches are still limited to identifying the modes without significant overlapping in time-frequency domain. In this study, a spectrogram decomposition technique was developed based on a combination strategy of generalized separable nonnegative matrix factorization (GS-NMF) and adaptive basis learning, towards the automatic mode extraction under severe overlapping and low signal-to-noise ratio (SNR). The extracted modes were further used for cortical thickness estimation. The method was verified using broadband simulated and experimental datasets. Experiments were conducted on a bone-mimicking plate and bovine cortical bone plates. For simulated data, the relative errors between extracted and theoretical dispersion curves are 1.33% (SNR = ∞), 1.43% (SNR = 10 dB) and 0.88% (SNR = 5 dB). The root-mean-square errors of the estimated thickness for 3.10 mm-thick bone-mimicking plate, 3.83 mm- and 4.00 mm-thick bovine cortical bone plates are 0.039 mm, 0.049 mm, and 0.052 mm, respectively. It is demonstrated that the proposed method is capable of separating multimodal UGWs even under significantly overlapping and low SNR conditions, further facilitating the UGW-based cortical thickness assessment." @default.
- W4200310367 created "2021-12-31" @default.
- W4200310367 creator A5011739887 @default.
- W4200310367 creator A5012696256 @default.
- W4200310367 creator A5034184452 @default.
- W4200310367 creator A5034579408 @default.
- W4200310367 creator A5051870739 @default.
- W4200310367 creator A5059714759 @default.
- W4200310367 creator A5087975581 @default.
- W4200310367 date "2022-03-01" @default.
- W4200310367 modified "2023-10-18" @default.
- W4200310367 title "Spectrogram decomposition of ultrasonic guided waves for cortical thickness assessment using basis learning" @default.
- W4200310367 cites W1902027874 @default.
- W4200310367 cites W1966872876 @default.
- W4200310367 cites W1982755765 @default.
- W4200310367 cites W2002234731 @default.
- W4200310367 cites W2031503222 @default.
- W4200310367 cites W2047094503 @default.
- W4200310367 cites W2054878302 @default.
- W4200310367 cites W2056988972 @default.
- W4200310367 cites W2059745395 @default.
- W4200310367 cites W2064723811 @default.
- W4200310367 cites W2077531692 @default.
- W4200310367 cites W2085778870 @default.
- W4200310367 cites W2090891622 @default.
- W4200310367 cites W2118943995 @default.
- W4200310367 cites W2124557097 @default.
- W4200310367 cites W2129062845 @default.
- W4200310367 cites W2130765509 @default.
- W4200310367 cites W2132162421 @default.
- W4200310367 cites W2170413245 @default.
- W4200310367 cites W2231508007 @default.
- W4200310367 cites W2316918487 @default.
- W4200310367 cites W2387462954 @default.
- W4200310367 cites W2467499977 @default.
- W4200310367 cites W2467586416 @default.
- W4200310367 cites W2520289228 @default.
- W4200310367 cites W2783951595 @default.
- W4200310367 cites W2788786916 @default.
- W4200310367 cites W2912273811 @default.
- W4200310367 cites W2920168274 @default.
- W4200310367 cites W2920932249 @default.
- W4200310367 cites W2923060810 @default.
- W4200310367 cites W2950069040 @default.
- W4200310367 cites W2951931961 @default.
- W4200310367 cites W2992012085 @default.
- W4200310367 cites W2998722865 @default.
- W4200310367 cites W3087676231 @default.
- W4200310367 cites W3118084010 @default.
- W4200310367 doi "https://doi.org/10.1016/j.ultras.2021.106665" @default.
- W4200310367 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34968990" @default.
- W4200310367 hasPublicationYear "2022" @default.
- W4200310367 type Work @default.
- W4200310367 citedByCount "6" @default.
- W4200310367 countsByYear W42003103672022 @default.
- W4200310367 countsByYear W42003103672023 @default.
- W4200310367 crossrefType "journal-article" @default.
- W4200310367 hasAuthorship W4200310367A5011739887 @default.
- W4200310367 hasAuthorship W4200310367A5012696256 @default.
- W4200310367 hasAuthorship W4200310367A5034184452 @default.
- W4200310367 hasAuthorship W4200310367A5034579408 @default.
- W4200310367 hasAuthorship W4200310367A5051870739 @default.
- W4200310367 hasAuthorship W4200310367A5059714759 @default.
- W4200310367 hasAuthorship W4200310367A5087975581 @default.
- W4200310367 hasConcept C105702510 @default.
- W4200310367 hasConcept C11413529 @default.
- W4200310367 hasConcept C120665830 @default.
- W4200310367 hasConcept C121332964 @default.
- W4200310367 hasConcept C12426560 @default.
- W4200310367 hasConcept C152671427 @default.
- W4200310367 hasConcept C154945302 @default.
- W4200310367 hasConcept C158693339 @default.
- W4200310367 hasConcept C177562468 @default.
- W4200310367 hasConcept C192562407 @default.
- W4200310367 hasConcept C24890656 @default.
- W4200310367 hasConcept C2524010 @default.
- W4200310367 hasConcept C2781451080 @default.
- W4200310367 hasConcept C33923547 @default.
- W4200310367 hasConcept C41008148 @default.
- W4200310367 hasConcept C42355184 @default.
- W4200310367 hasConcept C45273575 @default.
- W4200310367 hasConcept C62520636 @default.
- W4200310367 hasConcept C71924100 @default.
- W4200310367 hasConcept C81288441 @default.
- W4200310367 hasConceptScore W4200310367C105702510 @default.
- W4200310367 hasConceptScore W4200310367C11413529 @default.
- W4200310367 hasConceptScore W4200310367C120665830 @default.
- W4200310367 hasConceptScore W4200310367C121332964 @default.
- W4200310367 hasConceptScore W4200310367C12426560 @default.
- W4200310367 hasConceptScore W4200310367C152671427 @default.
- W4200310367 hasConceptScore W4200310367C154945302 @default.
- W4200310367 hasConceptScore W4200310367C158693339 @default.
- W4200310367 hasConceptScore W4200310367C177562468 @default.
- W4200310367 hasConceptScore W4200310367C192562407 @default.
- W4200310367 hasConceptScore W4200310367C24890656 @default.
- W4200310367 hasConceptScore W4200310367C2524010 @default.
- W4200310367 hasConceptScore W4200310367C2781451080 @default.
- W4200310367 hasConceptScore W4200310367C33923547 @default.