Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200312906> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4200312906 endingPage "199" @default.
- W4200312906 startingPage "183" @default.
- W4200312906 abstract "Automated biomedical signal processing becomes an essential process to determine the indicators of diseased states. At the same time, latest developments of artificial intelligence (AI) techniques have the ability to manage and analyzing massive amounts of biomedical datasets results in clinical decisions and real time applications. They can be employed for medical imaging; however, the 1D biomedical signal recognition process is still needing to be improved. Electrocardiogram (ECG) is one of the widely used 1-dimensional biomedical signals, which is used to diagnose cardiovascular diseases. Computer assisted diagnostic models find it difficult to automatically classify the 1D ECG signals owing to time-varying dynamics and diverse profiles of ECG signals. To resolve these issues, this study designs automated deep learning based 1D biomedical ECG signal recognition for cardiovascular disease diagnosis (DLECG-CVD) model. The DLECG-CVD model involves different stages of operations such as pre-processing, feature extraction, hyperparameter tuning, and classification. At the initial stage, data pre-processing takes place to convert the ECG report to valuable data and transform it into a compatible format for further processing. In addition, deep belief network (DBN) model is applied to derive a set of feature vectors. Besides, improved swallow swarm optimization (ISSO) algorithm is used for the hyperparameter tuning of the DBN model. Lastly, extreme gradient boosting (XGBoost) classifier is employed to allocate proper class labels to the test ECG signals. In order to verify the improved diagnostic performance of the DLECG-CVD model, a set of simulations is carried out on the benchmark PTB-XL dataset. A detailed comparative study highlighted the betterment of the DLECG-CVD model interms of accuracy, sensitivity, specificity, kappa, Mathew correlation coefficient, and Hamming loss." @default.
- W4200312906 created "2021-12-31" @default.
- W4200312906 creator A5033422512 @default.
- W4200312906 creator A5079798283 @default.
- W4200312906 creator A5080948360 @default.
- W4200312906 creator A5083029838 @default.
- W4200312906 date "2022-01-01" @default.
- W4200312906 modified "2023-09-26" @default.
- W4200312906 title "Automated Deep Learning Based Cardiovascular Disease Diagnosis Using ECG Signals" @default.
- W4200312906 cites W1987845731 @default.
- W4200312906 cites W2136922672 @default.
- W4200312906 cites W2294867897 @default.
- W4200312906 cites W2610774001 @default.
- W4200312906 cites W2747849569 @default.
- W4200312906 cites W2913005526 @default.
- W4200312906 cites W2944880973 @default.
- W4200312906 cites W2971357197 @default.
- W4200312906 cites W2985759007 @default.
- W4200312906 cites W2987011834 @default.
- W4200312906 cites W2990331389 @default.
- W4200312906 cites W3000662942 @default.
- W4200312906 cites W3007969083 @default.
- W4200312906 cites W3009460750 @default.
- W4200312906 cites W3012331434 @default.
- W4200312906 cites W3015801892 @default.
- W4200312906 cites W3027572331 @default.
- W4200312906 cites W3028054676 @default.
- W4200312906 cites W3030610740 @default.
- W4200312906 cites W3085439927 @default.
- W4200312906 cites W3087333752 @default.
- W4200312906 cites W3123326053 @default.
- W4200312906 cites W3133814784 @default.
- W4200312906 cites W3135891860 @default.
- W4200312906 doi "https://doi.org/10.32604/csse.2022.021698" @default.
- W4200312906 hasPublicationYear "2022" @default.
- W4200312906 type Work @default.
- W4200312906 citedByCount "5" @default.
- W4200312906 countsByYear W42003129062022 @default.
- W4200312906 countsByYear W42003129062023 @default.
- W4200312906 crossrefType "journal-article" @default.
- W4200312906 hasAuthorship W4200312906A5033422512 @default.
- W4200312906 hasAuthorship W4200312906A5079798283 @default.
- W4200312906 hasAuthorship W4200312906A5080948360 @default.
- W4200312906 hasAuthorship W4200312906A5083029838 @default.
- W4200312906 hasBestOaLocation W42003129061 @default.
- W4200312906 hasConcept C104267543 @default.
- W4200312906 hasConcept C108583219 @default.
- W4200312906 hasConcept C119857082 @default.
- W4200312906 hasConcept C124101348 @default.
- W4200312906 hasConcept C13280743 @default.
- W4200312906 hasConcept C153180895 @default.
- W4200312906 hasConcept C154945302 @default.
- W4200312906 hasConcept C185798385 @default.
- W4200312906 hasConcept C205649164 @default.
- W4200312906 hasConcept C41008148 @default.
- W4200312906 hasConcept C50644808 @default.
- W4200312906 hasConcept C52622490 @default.
- W4200312906 hasConcept C84462506 @default.
- W4200312906 hasConcept C8642999 @default.
- W4200312906 hasConcept C9390403 @default.
- W4200312906 hasConcept C95623464 @default.
- W4200312906 hasConceptScore W4200312906C104267543 @default.
- W4200312906 hasConceptScore W4200312906C108583219 @default.
- W4200312906 hasConceptScore W4200312906C119857082 @default.
- W4200312906 hasConceptScore W4200312906C124101348 @default.
- W4200312906 hasConceptScore W4200312906C13280743 @default.
- W4200312906 hasConceptScore W4200312906C153180895 @default.
- W4200312906 hasConceptScore W4200312906C154945302 @default.
- W4200312906 hasConceptScore W4200312906C185798385 @default.
- W4200312906 hasConceptScore W4200312906C205649164 @default.
- W4200312906 hasConceptScore W4200312906C41008148 @default.
- W4200312906 hasConceptScore W4200312906C50644808 @default.
- W4200312906 hasConceptScore W4200312906C52622490 @default.
- W4200312906 hasConceptScore W4200312906C84462506 @default.
- W4200312906 hasConceptScore W4200312906C8642999 @default.
- W4200312906 hasConceptScore W4200312906C9390403 @default.
- W4200312906 hasConceptScore W4200312906C95623464 @default.
- W4200312906 hasIssue "1" @default.
- W4200312906 hasLocation W42003129061 @default.
- W4200312906 hasOpenAccess W4200312906 @default.
- W4200312906 hasPrimaryLocation W42003129061 @default.
- W4200312906 hasRelatedWork W3047644063 @default.
- W4200312906 hasRelatedWork W3081580854 @default.
- W4200312906 hasRelatedWork W4210794429 @default.
- W4200312906 hasRelatedWork W4223943233 @default.
- W4200312906 hasRelatedWork W4287683259 @default.
- W4200312906 hasRelatedWork W4295309597 @default.
- W4200312906 hasRelatedWork W4312200629 @default.
- W4200312906 hasRelatedWork W4360585206 @default.
- W4200312906 hasRelatedWork W4364306694 @default.
- W4200312906 hasRelatedWork W4380075502 @default.
- W4200312906 hasVolume "42" @default.
- W4200312906 isParatext "false" @default.
- W4200312906 isRetracted "false" @default.
- W4200312906 workType "article" @default.