Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200313900> ?p ?o ?g. }
- W4200313900 endingPage "107888" @default.
- W4200313900 startingPage "107888" @default.
- W4200313900 abstract "Complex and diverse microbial communities have certain impacts on human health, and specific drugs are needed to treat diseases caused by microbes. However, most of the discovery of associations between microbes and drugs is through biological experiments, which are time-consuming and expensive. Therefore, it is crucial to develop an effective and computational model to detect novel microbe–drug associations. In this study, we propose a model based on Multiple Kernel fusion on Graph Convolutional Network, called MKGCN, for inferring novel microbe–drug associations. Our model is built on the heterogeneous network of microbes and drugs to extract multi-layer features, through Graph Convolutional Network (GCN). Then, we respectively calculate the kernel matrix by embedding features on each layer, and fuse multiple kernel matrices based on the average weighting method. Finally, Dual Laplacian Regularized Least Squares is used to infer new microbe–drug associations by the combined kernel in microbe and drug spaces. Compared with the existing tools for detecting biological bipartite networks, our model has excellent prediction effect on three datasets via three types of cross-validation. Furthermore, we also conduct a case study of the SARS-Cov-2 virus and make a deduction about drugs that may be able to associate with COVID-19. We have proved the accuracy of the prediction results through the existing literature." @default.
- W4200313900 created "2021-12-31" @default.
- W4200313900 creator A5001619694 @default.
- W4200313900 creator A5043188795 @default.
- W4200313900 creator A5050018283 @default.
- W4200313900 creator A5081832999 @default.
- W4200313900 date "2022-02-01" @default.
- W4200313900 modified "2023-10-14" @default.
- W4200313900 title "Inferring human microbe–drug associations via multiple kernel fusion on graph neural network" @default.
- W4200313900 cites W1990571751 @default.
- W4200313900 cites W2087007556 @default.
- W4200313900 cites W2106029302 @default.
- W4200313900 cites W2161607603 @default.
- W4200313900 cites W2346950316 @default.
- W4200313900 cites W2567465856 @default.
- W4200313900 cites W2583889943 @default.
- W4200313900 cites W2769934873 @default.
- W4200313900 cites W2771545712 @default.
- W4200313900 cites W2809363952 @default.
- W4200313900 cites W2902557437 @default.
- W4200313900 cites W2902773418 @default.
- W4200313900 cites W2903096015 @default.
- W4200313900 cites W2903730942 @default.
- W4200313900 cites W2950777612 @default.
- W4200313900 cites W2964051675 @default.
- W4200313900 cites W2967109100 @default.
- W4200313900 cites W2988135813 @default.
- W4200313900 cites W3000082418 @default.
- W4200313900 cites W3005212621 @default.
- W4200313900 cites W3009246021 @default.
- W4200313900 cites W3009456922 @default.
- W4200313900 cites W3012455685 @default.
- W4200313900 cites W3012588029 @default.
- W4200313900 cites W3014203610 @default.
- W4200313900 cites W3015613878 @default.
- W4200313900 cites W3016402574 @default.
- W4200313900 cites W3017523971 @default.
- W4200313900 cites W3018225963 @default.
- W4200313900 cites W3019420921 @default.
- W4200313900 cites W3019805177 @default.
- W4200313900 cites W3023594261 @default.
- W4200313900 cites W3023735120 @default.
- W4200313900 cites W3025226065 @default.
- W4200313900 cites W3029664250 @default.
- W4200313900 cites W3030817098 @default.
- W4200313900 cites W3031326483 @default.
- W4200313900 cites W3031460555 @default.
- W4200313900 cites W3034449938 @default.
- W4200313900 cites W3035188139 @default.
- W4200313900 cites W3035913102 @default.
- W4200313900 cites W3036077831 @default.
- W4200313900 cites W3036473471 @default.
- W4200313900 cites W3037489518 @default.
- W4200313900 cites W3042517483 @default.
- W4200313900 cites W3067080207 @default.
- W4200313900 cites W3108634112 @default.
- W4200313900 cites W3124587091 @default.
- W4200313900 cites W3126819807 @default.
- W4200313900 cites W3132461044 @default.
- W4200313900 doi "https://doi.org/10.1016/j.knosys.2021.107888" @default.
- W4200313900 hasPublicationYear "2022" @default.
- W4200313900 type Work @default.
- W4200313900 citedByCount "11" @default.
- W4200313900 countsByYear W42003139002022 @default.
- W4200313900 countsByYear W42003139002023 @default.
- W4200313900 crossrefType "journal-article" @default.
- W4200313900 hasAuthorship W4200313900A5001619694 @default.
- W4200313900 hasAuthorship W4200313900A5043188795 @default.
- W4200313900 hasAuthorship W4200313900A5050018283 @default.
- W4200313900 hasAuthorship W4200313900A5081832999 @default.
- W4200313900 hasConcept C114614502 @default.
- W4200313900 hasConcept C119857082 @default.
- W4200313900 hasConcept C124101348 @default.
- W4200313900 hasConcept C126838900 @default.
- W4200313900 hasConcept C132525143 @default.
- W4200313900 hasConcept C154945302 @default.
- W4200313900 hasConcept C183115368 @default.
- W4200313900 hasConcept C28225019 @default.
- W4200313900 hasConcept C33923547 @default.
- W4200313900 hasConcept C41008148 @default.
- W4200313900 hasConcept C70721500 @default.
- W4200313900 hasConcept C71924100 @default.
- W4200313900 hasConcept C74193536 @default.
- W4200313900 hasConcept C80444323 @default.
- W4200313900 hasConcept C86803240 @default.
- W4200313900 hasConceptScore W4200313900C114614502 @default.
- W4200313900 hasConceptScore W4200313900C119857082 @default.
- W4200313900 hasConceptScore W4200313900C124101348 @default.
- W4200313900 hasConceptScore W4200313900C126838900 @default.
- W4200313900 hasConceptScore W4200313900C132525143 @default.
- W4200313900 hasConceptScore W4200313900C154945302 @default.
- W4200313900 hasConceptScore W4200313900C183115368 @default.
- W4200313900 hasConceptScore W4200313900C28225019 @default.
- W4200313900 hasConceptScore W4200313900C33923547 @default.
- W4200313900 hasConceptScore W4200313900C41008148 @default.
- W4200313900 hasConceptScore W4200313900C70721500 @default.
- W4200313900 hasConceptScore W4200313900C71924100 @default.
- W4200313900 hasConceptScore W4200313900C74193536 @default.