Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200313985> ?p ?o ?g. }
- W4200313985 abstract "Abstract Objective In this large multi-institutional study, we aimed to analyze the prognostic power of computed tomography (CT)-based radiomics models in COVID-19 patients. Methods CT images of 14,339 COVID-19 patients with overall survival outcome were collected from 19 medical centers. Whole lung segmentations were performed automatically using a previously validated deep learning-based model, and regions of interest were further evaluated and modified by a human observer. All images were resampled to an isotropic voxel size, intensities were discretized into 64-binning size, and 105 radiomics features, including shape, intensity, and texture features were extracted from the lung mask. Radiomics features were normalized using Z-score normalization. High-correlated features using Pearson (R 2 >0.99) were eliminated. We applied the Synthetic Minority Oversampling Technique (SMOT) algorithm in only the training set for different models to overcome unbalance classes. We used 4 feature selection algorithms, namely Analysis of Variance (ANOVA), Kruskal- Wallis (KW), Recursive Feature Elimination (RFE), and Relief. For the classification task, we used seven classifiers, including Logistic Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost (AB), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The models were built and evaluated using training and testing sets, respectively. Specifically, we evaluated the models using 10 different splitting and cross-validation strategies, including different types of test datasets (e.g. non-harmonized vs. ComBat-harmonized datasets). The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were reported for models evaluation. Results In the test dataset (4301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83±0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + RF classifier. In RT-PCR-only positive test sets (3644), similar results were achieved, and there was no statistically significant difference. In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in highest performance of AUC, reaching 0.83±0.01 (CI95%: 0.81-0.85), with sensitivity and specificity of 0.77 and 0.74, respectively. At the same time, ComBat harmonization did not depict statistically significant improvement relevant to non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and LR classifier resulted in the highest performance of AUC (0.80±0.084) with sensitivity and specificity of 0.77 ± 0.11 and 0.76 ± 0.075, respectively. Conclusion Lung CT radiomics features can be used towards robust prognostic modeling of COVID-19 in large heterogeneous datasets gathered from multiple centers. As such, CT radiomics-based model has significant potential for use in prospective clinical settings towards improved management of COVID-19 patients." @default.
- W4200313985 created "2021-12-31" @default.
- W4200313985 creator A5002885963 @default.
- W4200313985 creator A5003433949 @default.
- W4200313985 creator A5004193178 @default.
- W4200313985 creator A5007055141 @default.
- W4200313985 creator A5007891293 @default.
- W4200313985 creator A5009538885 @default.
- W4200313985 creator A5017888054 @default.
- W4200313985 creator A5018450250 @default.
- W4200313985 creator A5021438906 @default.
- W4200313985 creator A5023542749 @default.
- W4200313985 creator A5025683930 @default.
- W4200313985 creator A5029665643 @default.
- W4200313985 creator A5036586704 @default.
- W4200313985 creator A5036836472 @default.
- W4200313985 creator A5038329042 @default.
- W4200313985 creator A5039181443 @default.
- W4200313985 creator A5039517354 @default.
- W4200313985 creator A5040861172 @default.
- W4200313985 creator A5041147908 @default.
- W4200313985 creator A5041981029 @default.
- W4200313985 creator A5043140418 @default.
- W4200313985 creator A5043174153 @default.
- W4200313985 creator A5043250262 @default.
- W4200313985 creator A5044859383 @default.
- W4200313985 creator A5045836855 @default.
- W4200313985 creator A5047145471 @default.
- W4200313985 creator A5048817483 @default.
- W4200313985 creator A5049491814 @default.
- W4200313985 creator A5051197496 @default.
- W4200313985 creator A5051496035 @default.
- W4200313985 creator A5052594901 @default.
- W4200313985 creator A5052997773 @default.
- W4200313985 creator A5054247879 @default.
- W4200313985 creator A5054918541 @default.
- W4200313985 creator A5057433079 @default.
- W4200313985 creator A5059624748 @default.
- W4200313985 creator A5062382836 @default.
- W4200313985 creator A5062949279 @default.
- W4200313985 creator A5064324055 @default.
- W4200313985 creator A5066149951 @default.
- W4200313985 creator A5067475611 @default.
- W4200313985 creator A5067594915 @default.
- W4200313985 creator A5067903849 @default.
- W4200313985 creator A5069570780 @default.
- W4200313985 creator A5070346261 @default.
- W4200313985 creator A5081306836 @default.
- W4200313985 creator A5084020872 @default.
- W4200313985 creator A5089587974 @default.
- W4200313985 creator A5091064624 @default.
- W4200313985 date "2021-12-07" @default.
- W4200313985 modified "2023-10-02" @default.
- W4200313985 title "COVID-19 Prognostic Modeling Using CT Radiomic Features and Machine Learning Algorithms: Analysis of a Multi-Institutional Dataset of 14,339 Patients" @default.
- W4200313985 cites W2034937344 @default.
- W4200313985 cites W2050167599 @default.
- W4200313985 cites W2107665951 @default.
- W4200313985 cites W2605013887 @default.
- W4200313985 cites W2767128594 @default.
- W4200313985 cites W2975016039 @default.
- W4200313985 cites W2998789541 @default.
- W4200313985 cites W3006645647 @default.
- W4200313985 cites W3009875419 @default.
- W4200313985 cites W3010061930 @default.
- W4200313985 cites W3013294478 @default.
- W4200313985 cites W3017272320 @default.
- W4200313985 cites W3019336217 @default.
- W4200313985 cites W3020653337 @default.
- W4200313985 cites W3025948831 @default.
- W4200313985 cites W3026085071 @default.
- W4200313985 cites W3034988614 @default.
- W4200313985 cites W3035941308 @default.
- W4200313985 cites W3040075864 @default.
- W4200313985 cites W3041041945 @default.
- W4200313985 cites W3044994436 @default.
- W4200313985 cites W3047349135 @default.
- W4200313985 cites W3048479457 @default.
- W4200313985 cites W3049757379 @default.
- W4200313985 cites W3080709651 @default.
- W4200313985 cites W3083792018 @default.
- W4200313985 cites W3087434656 @default.
- W4200313985 cites W3090218328 @default.
- W4200313985 cites W3092234733 @default.
- W4200313985 cites W3093272769 @default.
- W4200313985 cites W3093455605 @default.
- W4200313985 cites W3094035514 @default.
- W4200313985 cites W3094239664 @default.
- W4200313985 cites W3095148746 @default.
- W4200313985 cites W3095989031 @default.
- W4200313985 cites W3101024103 @default.
- W4200313985 cites W3102547009 @default.
- W4200313985 cites W3104739447 @default.
- W4200313985 cites W3105326651 @default.
- W4200313985 cites W3110425125 @default.
- W4200313985 cites W3110670148 @default.
- W4200313985 cites W3115166171 @default.
- W4200313985 cites W3119069471 @default.
- W4200313985 cites W3135092238 @default.
- W4200313985 cites W3136933888 @default.
- W4200313985 cites W3156520986 @default.