Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200315885> ?p ?o ?g. }
- W4200315885 abstract "The ability to predict chemical reactivity of a molecule is highly desirable in drug discovery, both ex vivo (synthetic route planning, formulation, stability) and in vivo: metabolic reactions determine pharmacodynamics, pharmacokinetics and potential toxic effects, and early assessment of liabilities is vital to reduce attrition rates in later stages of development. Quantum mechanics offer a precise description of the interactions between electrons and orbitals in the breaking and forming of new bonds. Modern algorithms and faster computers have allowed the study of more complex systems in a punctual and accurate fashion, and answers for chemical questions around stability and reactivity can now be provided. Through machine learning, predictive models can be built out of descriptors derived from quantum mechanics and cheminformatics, even in the absence of experimental data to train on. In this article, current progress on computational reactivity prediction is reviewed: applications to problems in drug design, such as modelling of metabolism and covalent inhibition, are highlighted and unmet challenges are posed." @default.
- W4200315885 created "2021-12-31" @default.
- W4200315885 creator A5015356572 @default.
- W4200315885 creator A5025468315 @default.
- W4200315885 creator A5031496441 @default.
- W4200315885 creator A5037880051 @default.
- W4200315885 creator A5038418094 @default.
- W4200315885 creator A5044129967 @default.
- W4200315885 creator A5057292715 @default.
- W4200315885 creator A5070970329 @default.
- W4200315885 date "2022-01-22" @default.
- W4200315885 modified "2023-09-27" @default.
- W4200315885 title "Chemical Reactivity Prediction: Current Methods and Different Application Areas" @default.
- W4200315885 cites W1968753037 @default.
- W4200315885 cites W1974254541 @default.
- W4200315885 cites W1974707882 @default.
- W4200315885 cites W2009458392 @default.
- W4200315885 cites W2032049376 @default.
- W4200315885 cites W2032271067 @default.
- W4200315885 cites W2047937197 @default.
- W4200315885 cites W2069457036 @default.
- W4200315885 cites W2115763439 @default.
- W4200315885 cites W2189911347 @default.
- W4200315885 cites W2322586343 @default.
- W4200315885 cites W2415036177 @default.
- W4200315885 cites W2527374587 @default.
- W4200315885 cites W2602516229 @default.
- W4200315885 cites W2606363443 @default.
- W4200315885 cites W2614198047 @default.
- W4200315885 cites W2622322262 @default.
- W4200315885 cites W2742528013 @default.
- W4200315885 cites W2747592475 @default.
- W4200315885 cites W2757649528 @default.
- W4200315885 cites W2769901316 @default.
- W4200315885 cites W2785942661 @default.
- W4200315885 cites W2788830470 @default.
- W4200315885 cites W2791657723 @default.
- W4200315885 cites W2799620402 @default.
- W4200315885 cites W2803015205 @default.
- W4200315885 cites W2830440988 @default.
- W4200315885 cites W2888302950 @default.
- W4200315885 cites W2891085910 @default.
- W4200315885 cites W2891966865 @default.
- W4200315885 cites W2900592234 @default.
- W4200315885 cites W2900981302 @default.
- W4200315885 cites W2901942917 @default.
- W4200315885 cites W2903262661 @default.
- W4200315885 cites W2904506792 @default.
- W4200315885 cites W2907470641 @default.
- W4200315885 cites W2908837618 @default.
- W4200315885 cites W2909463267 @default.
- W4200315885 cites W2910222073 @default.
- W4200315885 cites W2911997094 @default.
- W4200315885 cites W2932449756 @default.
- W4200315885 cites W2954886265 @default.
- W4200315885 cites W2965877034 @default.
- W4200315885 cites W2969507301 @default.
- W4200315885 cites W2972445272 @default.
- W4200315885 cites W2972524718 @default.
- W4200315885 cites W2973195589 @default.
- W4200315885 cites W3000643563 @default.
- W4200315885 cites W3009264613 @default.
- W4200315885 cites W3012519883 @default.
- W4200315885 cites W3015135863 @default.
- W4200315885 cites W3015608194 @default.
- W4200315885 cites W3034612930 @default.
- W4200315885 cites W3035372176 @default.
- W4200315885 cites W3040834925 @default.
- W4200315885 cites W3043486744 @default.
- W4200315885 cites W3088999551 @default.
- W4200315885 cites W3090876102 @default.
- W4200315885 cites W3091476619 @default.
- W4200315885 cites W3093687066 @default.
- W4200315885 cites W3097476496 @default.
- W4200315885 cites W3097605476 @default.
- W4200315885 cites W3103092523 @default.
- W4200315885 cites W3107647937 @default.
- W4200315885 cites W3109863631 @default.
- W4200315885 cites W3116434238 @default.
- W4200315885 cites W3122489865 @default.
- W4200315885 cites W3132434847 @default.
- W4200315885 cites W3135942277 @default.
- W4200315885 cites W3146384714 @default.
- W4200315885 cites W3157403564 @default.
- W4200315885 cites W3165507212 @default.
- W4200315885 cites W3176477921 @default.
- W4200315885 cites W3185173202 @default.
- W4200315885 cites W4231649355 @default.
- W4200315885 doi "https://doi.org/10.1002/minf.202100277" @default.
- W4200315885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34964302" @default.
- W4200315885 hasPublicationYear "2022" @default.
- W4200315885 type Work @default.
- W4200315885 citedByCount "2" @default.
- W4200315885 countsByYear W42003158852022 @default.
- W4200315885 countsByYear W42003158852023 @default.
- W4200315885 crossrefType "journal-article" @default.
- W4200315885 hasAuthorship W4200315885A5015356572 @default.
- W4200315885 hasAuthorship W4200315885A5025468315 @default.
- W4200315885 hasAuthorship W4200315885A5031496441 @default.
- W4200315885 hasAuthorship W4200315885A5037880051 @default.