Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200315904> ?p ?o ?g. }
- W4200315904 endingPage "118413" @default.
- W4200315904 startingPage "118413" @default.
- W4200315904 abstract "Ionic liquids (ILs) can capture acid gases that damaged the environment. Due to the properties of low-cost and non-toxic, machine learning can be used to screen ILs for gas absorption. To find the most suitable machine learning method for estimating gas absorption in ILs, 12 different machine learning algorithms are used to train models to estimate CO2 and H2S solubility in different ILs. Temperature (T), pressure (P), molecular weight (Mw), critical temperature (Tc), and critical pressure (Pc) of solutions are used as the input variables; Solubility is used as the output variable in the model training. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correlation Coefficient (R2) are used to evaluate the models. Stacking algorithm has the most accurate model in IL- CO2 system, with MSE, RMSE, MAE, and R2 of 0.001, 0.025, 0.018, and 0.969 respectively on average. Voting algorithm performs best in IL-H2S system; the four averaged metrics are 0.002, 0.032, 0.024, and 0.934 accordingly. By combining different algorithms, Voting and Stacking algorithms can balance out each model's weakness and produce a more accurate model. Stacking and Voting algorithms can be considered as a promising candidate for the estimation of acid gases solubility in ionic liquids." @default.
- W4200315904 created "2021-12-31" @default.
- W4200315904 creator A5028154934 @default.
- W4200315904 creator A5033271026 @default.
- W4200315904 creator A5060392607 @default.
- W4200315904 creator A5063632964 @default.
- W4200315904 creator A5089641600 @default.
- W4200315904 date "2022-03-01" @default.
- W4200315904 modified "2023-10-16" @default.
- W4200315904 title "Estimation of solubility of acid gases in ionic liquids using different machine learning methods" @default.
- W4200315904 cites W1969883977 @default.
- W4200315904 cites W1972547988 @default.
- W4200315904 cites W1976320189 @default.
- W4200315904 cites W1976553449 @default.
- W4200315904 cites W1985087154 @default.
- W4200315904 cites W1988790447 @default.
- W4200315904 cites W1995258983 @default.
- W4200315904 cites W1996276774 @default.
- W4200315904 cites W1997726752 @default.
- W4200315904 cites W2004415609 @default.
- W4200315904 cites W2013748968 @default.
- W4200315904 cites W2018813307 @default.
- W4200315904 cites W2021860166 @default.
- W4200315904 cites W2029998788 @default.
- W4200315904 cites W2030986885 @default.
- W4200315904 cites W2041807316 @default.
- W4200315904 cites W2048439372 @default.
- W4200315904 cites W2049195743 @default.
- W4200315904 cites W2052503487 @default.
- W4200315904 cites W2056132907 @default.
- W4200315904 cites W2057564827 @default.
- W4200315904 cites W2059927105 @default.
- W4200315904 cites W2071956477 @default.
- W4200315904 cites W2084446153 @default.
- W4200315904 cites W2088846827 @default.
- W4200315904 cites W2102733140 @default.
- W4200315904 cites W2115203256 @default.
- W4200315904 cites W2153129612 @default.
- W4200315904 cites W2254005141 @default.
- W4200315904 cites W2256322079 @default.
- W4200315904 cites W2278230979 @default.
- W4200315904 cites W2317882422 @default.
- W4200315904 cites W2319872723 @default.
- W4200315904 cites W2413581040 @default.
- W4200315904 cites W2594801182 @default.
- W4200315904 cites W2736933663 @default.
- W4200315904 cites W2750965727 @default.
- W4200315904 cites W2769526753 @default.
- W4200315904 cites W2780820657 @default.
- W4200315904 cites W2791410602 @default.
- W4200315904 cites W2807838313 @default.
- W4200315904 cites W2810299670 @default.
- W4200315904 cites W28412257 @default.
- W4200315904 cites W2888610676 @default.
- W4200315904 cites W2903564511 @default.
- W4200315904 cites W2911964244 @default.
- W4200315904 cites W2914520152 @default.
- W4200315904 cites W2917667327 @default.
- W4200315904 cites W2928952458 @default.
- W4200315904 cites W2966935623 @default.
- W4200315904 cites W2977928991 @default.
- W4200315904 cites W2978858794 @default.
- W4200315904 cites W3038908664 @default.
- W4200315904 cites W3084950272 @default.
- W4200315904 cites W3091831545 @default.
- W4200315904 cites W3104526988 @default.
- W4200315904 cites W3109795636 @default.
- W4200315904 cites W3111075962 @default.
- W4200315904 cites W3112609265 @default.
- W4200315904 cites W4212883601 @default.
- W4200315904 cites W4243586822 @default.
- W4200315904 doi "https://doi.org/10.1016/j.molliq.2021.118413" @default.
- W4200315904 hasPublicationYear "2022" @default.
- W4200315904 type Work @default.
- W4200315904 citedByCount "8" @default.
- W4200315904 countsByYear W42003159042022 @default.
- W4200315904 countsByYear W42003159042023 @default.
- W4200315904 crossrefType "journal-article" @default.
- W4200315904 hasAuthorship W4200315904A5028154934 @default.
- W4200315904 hasAuthorship W4200315904A5033271026 @default.
- W4200315904 hasAuthorship W4200315904A5060392607 @default.
- W4200315904 hasAuthorship W4200315904A5063632964 @default.
- W4200315904 hasAuthorship W4200315904A5089641600 @default.
- W4200315904 hasConcept C105795698 @default.
- W4200315904 hasConcept C109209724 @default.
- W4200315904 hasConcept C11413529 @default.
- W4200315904 hasConcept C119857082 @default.
- W4200315904 hasConcept C125287762 @default.
- W4200315904 hasConcept C139945424 @default.
- W4200315904 hasConcept C147789679 @default.
- W4200315904 hasConcept C154881586 @default.
- W4200315904 hasConcept C155574463 @default.
- W4200315904 hasConcept C159985019 @default.
- W4200315904 hasConcept C161790260 @default.
- W4200315904 hasConcept C178790620 @default.
- W4200315904 hasConcept C179104552 @default.
- W4200315904 hasConcept C185592680 @default.
- W4200315904 hasConcept C192562407 @default.