Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200318892> ?p ?o ?g. }
- W4200318892 endingPage "300" @default.
- W4200318892 startingPage "286" @default.
- W4200318892 abstract "In modern manufacturing industry, tool wear monitoring plays a significant role in ensuring product quality and machining efficiency. Numerous data-driven models based on deep learning have been developed to improve the accuracy of tool wear monitoring. However, tool wear monitoring under variable working conditions is rarely investigated. More importantly, for data-driven smart manufacturing, it is more meaningful and challenging to simultaneously achieve tool wear monitoring and multi-step prediction. To address the aforementioned issue, a novel framework based on feature normalization, attention mechanism, and deep learning algorithms was proposed for tool wear monitoring and multi-step prediction. Feature normalization was introduced to eliminate the dependence of local features on cutting conditions, and the attention mechanism was applied to enhance valuable information and weaken redundant information. Then a parallel convolutional neural network (parallel CNN) structure with different layers followed by Bi-directional long short term memory (BiLSTM) was developed for tool condition monitoring. Finally, based on the monitored tool wear values, a new tool condition prediction model based on the dense residual neural network (ResNetD) was proposed for short-term and long-term prediction of tool wear. Tool wear experiments under different combinations of cutting parameters were conducted to verify the proposed model, and the results showed that the proposed model has great advantages in efficiency and robustness compared with other data-driven models." @default.
- W4200318892 created "2021-12-31" @default.
- W4200318892 creator A5020511145 @default.
- W4200318892 creator A5039503551 @default.
- W4200318892 creator A5042232273 @default.
- W4200318892 creator A5048125635 @default.
- W4200318892 creator A5060611328 @default.
- W4200318892 creator A5063922467 @default.
- W4200318892 creator A5068591033 @default.
- W4200318892 date "2022-01-01" @default.
- W4200318892 modified "2023-10-17" @default.
- W4200318892 title "Intelligent tool wear monitoring and multi-step prediction based on deep learning model" @default.
- W4200318892 cites W1982291194 @default.
- W4200318892 cites W2321274876 @default.
- W4200318892 cites W2344695726 @default.
- W4200318892 cites W2461218363 @default.
- W4200318892 cites W2495358219 @default.
- W4200318892 cites W2580840020 @default.
- W4200318892 cites W2740570963 @default.
- W4200318892 cites W2763207739 @default.
- W4200318892 cites W2769319337 @default.
- W4200318892 cites W2770233526 @default.
- W4200318892 cites W2773549135 @default.
- W4200318892 cites W2794469369 @default.
- W4200318892 cites W2794899039 @default.
- W4200318892 cites W2805797750 @default.
- W4200318892 cites W2810292802 @default.
- W4200318892 cites W2890207295 @default.
- W4200318892 cites W2912454129 @default.
- W4200318892 cites W2938021361 @default.
- W4200318892 cites W2943919793 @default.
- W4200318892 cites W2950380591 @default.
- W4200318892 cites W2997905955 @default.
- W4200318892 cites W3000983008 @default.
- W4200318892 cites W3003767554 @default.
- W4200318892 cites W3006635458 @default.
- W4200318892 cites W3024946300 @default.
- W4200318892 cites W3035498232 @default.
- W4200318892 cites W3042309388 @default.
- W4200318892 cites W3044572681 @default.
- W4200318892 cites W3093010392 @default.
- W4200318892 cites W3095110770 @default.
- W4200318892 cites W3110378470 @default.
- W4200318892 cites W3128040342 @default.
- W4200318892 cites W3136408793 @default.
- W4200318892 cites W3147206993 @default.
- W4200318892 cites W3148117486 @default.
- W4200318892 cites W3151403060 @default.
- W4200318892 cites W3153962893 @default.
- W4200318892 cites W3161984398 @default.
- W4200318892 cites W3183900226 @default.
- W4200318892 cites W3185234777 @default.
- W4200318892 cites W3195098050 @default.
- W4200318892 cites W3207672850 @default.
- W4200318892 cites W3212135938 @default.
- W4200318892 cites W4245320202 @default.
- W4200318892 doi "https://doi.org/10.1016/j.jmsy.2021.12.002" @default.
- W4200318892 hasPublicationYear "2022" @default.
- W4200318892 type Work @default.
- W4200318892 citedByCount "48" @default.
- W4200318892 countsByYear W42003188922022 @default.
- W4200318892 countsByYear W42003188922023 @default.
- W4200318892 crossrefType "journal-article" @default.
- W4200318892 hasAuthorship W4200318892A5020511145 @default.
- W4200318892 hasAuthorship W4200318892A5039503551 @default.
- W4200318892 hasAuthorship W4200318892A5042232273 @default.
- W4200318892 hasAuthorship W4200318892A5048125635 @default.
- W4200318892 hasAuthorship W4200318892A5060611328 @default.
- W4200318892 hasAuthorship W4200318892A5063922467 @default.
- W4200318892 hasAuthorship W4200318892A5068591033 @default.
- W4200318892 hasConcept C104317684 @default.
- W4200318892 hasConcept C108583219 @default.
- W4200318892 hasConcept C11413529 @default.
- W4200318892 hasConcept C119599485 @default.
- W4200318892 hasConcept C119857082 @default.
- W4200318892 hasConcept C124101348 @default.
- W4200318892 hasConcept C127413603 @default.
- W4200318892 hasConcept C136886441 @default.
- W4200318892 hasConcept C144024400 @default.
- W4200318892 hasConcept C154945302 @default.
- W4200318892 hasConcept C155512373 @default.
- W4200318892 hasConcept C185592680 @default.
- W4200318892 hasConcept C19165224 @default.
- W4200318892 hasConcept C2775846686 @default.
- W4200318892 hasConcept C2776450708 @default.
- W4200318892 hasConcept C41008148 @default.
- W4200318892 hasConcept C50644808 @default.
- W4200318892 hasConcept C523214423 @default.
- W4200318892 hasConcept C55493867 @default.
- W4200318892 hasConcept C63479239 @default.
- W4200318892 hasConcept C78519656 @default.
- W4200318892 hasConcept C81363708 @default.
- W4200318892 hasConceptScore W4200318892C104317684 @default.
- W4200318892 hasConceptScore W4200318892C108583219 @default.
- W4200318892 hasConceptScore W4200318892C11413529 @default.
- W4200318892 hasConceptScore W4200318892C119599485 @default.
- W4200318892 hasConceptScore W4200318892C119857082 @default.
- W4200318892 hasConceptScore W4200318892C124101348 @default.