Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200320228> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4200320228 endingPage "12" @default.
- W4200320228 startingPage "7" @default.
- W4200320228 abstract "Mill load is a key parameter for the safety and optimal control of the grinding process in mineral processing. Grinding sound signal is usually used to detect the mill load indirectly. However, the relationship between grinding sound signal and the mill load is really complicated. In this study, a mill load identification method is proposed by combining the machine learning algorithm with the sound recognition technology. Firstly, a geometric spectral subtraction denoising method based on auto regressive (AR) spectrum estimation is proposed to preprocess the grinding sound signal. Then, the ensemble empirical mode decomposition (EEMD) method is used to decompose the grinding signal. Suitable IMF components are then selected to reconstruct the grinding signal and the box fractal dimension feature is extracted. Finally, an optimized extreme learning machine (ELM) method was proposed to identify the mill load. The simulation results using industrial data show that the proposed method has better overall recognition accuracy compared with other machine learning methods." @default.
- W4200320228 created "2021-12-31" @default.
- W4200320228 creator A5000246532 @default.
- W4200320228 creator A5046781770 @default.
- W4200320228 creator A5051193292 @default.
- W4200320228 creator A5064069200 @default.
- W4200320228 creator A5083752100 @default.
- W4200320228 date "2021-01-01" @default.
- W4200320228 modified "2023-10-16" @default.
- W4200320228 title "Mill Load Identification Method for Ball milling Process Based on Grinding Signal" @default.
- W4200320228 cites W1636811490 @default.
- W4200320228 cites W2007221293 @default.
- W4200320228 cites W2023551781 @default.
- W4200320228 cites W2026131661 @default.
- W4200320228 cites W2029956212 @default.
- W4200320228 cites W2033853870 @default.
- W4200320228 cites W2034466751 @default.
- W4200320228 cites W2160097539 @default.
- W4200320228 cites W2380174733 @default.
- W4200320228 cites W2460897290 @default.
- W4200320228 cites W2587564195 @default.
- W4200320228 cites W2904090204 @default.
- W4200320228 cites W2955270119 @default.
- W4200320228 cites W3085062321 @default.
- W4200320228 cites W3135023386 @default.
- W4200320228 doi "https://doi.org/10.1016/j.ifacol.2021.12.002" @default.
- W4200320228 hasPublicationYear "2021" @default.
- W4200320228 type Work @default.
- W4200320228 citedByCount "0" @default.
- W4200320228 crossrefType "journal-article" @default.
- W4200320228 hasAuthorship W4200320228A5000246532 @default.
- W4200320228 hasAuthorship W4200320228A5046781770 @default.
- W4200320228 hasAuthorship W4200320228A5051193292 @default.
- W4200320228 hasAuthorship W4200320228A5064069200 @default.
- W4200320228 hasAuthorship W4200320228A5083752100 @default.
- W4200320228 hasBestOaLocation W42003202281 @default.
- W4200320228 hasConcept C106131492 @default.
- W4200320228 hasConcept C111919701 @default.
- W4200320228 hasConcept C127413603 @default.
- W4200320228 hasConcept C132186339 @default.
- W4200320228 hasConcept C153180895 @default.
- W4200320228 hasConcept C154945302 @default.
- W4200320228 hasConcept C16057445 @default.
- W4200320228 hasConcept C199360897 @default.
- W4200320228 hasConcept C25570617 @default.
- W4200320228 hasConcept C2777571299 @default.
- W4200320228 hasConcept C2779843651 @default.
- W4200320228 hasConcept C31972630 @default.
- W4200320228 hasConcept C41008148 @default.
- W4200320228 hasConcept C42360764 @default.
- W4200320228 hasConcept C78519656 @default.
- W4200320228 hasConcept C98045186 @default.
- W4200320228 hasConceptScore W4200320228C106131492 @default.
- W4200320228 hasConceptScore W4200320228C111919701 @default.
- W4200320228 hasConceptScore W4200320228C127413603 @default.
- W4200320228 hasConceptScore W4200320228C132186339 @default.
- W4200320228 hasConceptScore W4200320228C153180895 @default.
- W4200320228 hasConceptScore W4200320228C154945302 @default.
- W4200320228 hasConceptScore W4200320228C16057445 @default.
- W4200320228 hasConceptScore W4200320228C199360897 @default.
- W4200320228 hasConceptScore W4200320228C25570617 @default.
- W4200320228 hasConceptScore W4200320228C2777571299 @default.
- W4200320228 hasConceptScore W4200320228C2779843651 @default.
- W4200320228 hasConceptScore W4200320228C31972630 @default.
- W4200320228 hasConceptScore W4200320228C41008148 @default.
- W4200320228 hasConceptScore W4200320228C42360764 @default.
- W4200320228 hasConceptScore W4200320228C78519656 @default.
- W4200320228 hasConceptScore W4200320228C98045186 @default.
- W4200320228 hasFunder F4320321001 @default.
- W4200320228 hasFunder F4320335880 @default.
- W4200320228 hasIssue "21" @default.
- W4200320228 hasLocation W42003202281 @default.
- W4200320228 hasOpenAccess W4200320228 @default.
- W4200320228 hasPrimaryLocation W42003202281 @default.
- W4200320228 hasRelatedWork W2010095741 @default.
- W4200320228 hasRelatedWork W2046351541 @default.
- W4200320228 hasRelatedWork W2091791680 @default.
- W4200320228 hasRelatedWork W2217898624 @default.
- W4200320228 hasRelatedWork W2314396234 @default.
- W4200320228 hasRelatedWork W2367189332 @default.
- W4200320228 hasRelatedWork W2375171649 @default.
- W4200320228 hasRelatedWork W2387197697 @default.
- W4200320228 hasRelatedWork W4236506432 @default.
- W4200320228 hasRelatedWork W631879116 @default.
- W4200320228 hasVolume "54" @default.
- W4200320228 isParatext "false" @default.
- W4200320228 isRetracted "false" @default.
- W4200320228 workType "article" @default.