Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200320348> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4200320348 endingPage "133" @default.
- W4200320348 startingPage "133" @default.
- W4200320348 abstract "According to the behavior of its neuronal connections, it is possible to determine if the brain suffers from abnormalities such as epilepsy. This disease produces seizures and alters the patient’s behavior and lifestyle. Neurologists employ the electroencephalogram (EEG) to diagnose the disease through brain signals. Neurologists visually analyze these signals, recognizing patterns, to identify some indication of brain disorder that allows for the epilepsy diagnosis. This article proposes a study, based on the Fourier analysis, through fast Fourier transformation and principal component analysis, to quantitatively identify patterns to diagnose and differentiate between healthy patients and those with the disease. Subsequently, principal component analysis can be used to classify patients, employing frequency bands as the signal features. Besides, it is made a classification comparison before and after using principal component analysis. The classification is performed via logistic regression, with a reduction from 5 to 4 dimensions, as well as from 8 to 7, achieving an improvement when there are 7 dimensions in the precision, recall, and F1 score metrics. The best results obtained, without PCA are: precision 0.560, recall 0.690, and F1 score 0.620; meanwhile, the best values obtained using PCA are: precision 0.734, recall 0.787, and F1 score 0.776." @default.
- W4200320348 created "2021-12-31" @default.
- W4200320348 creator A5046917013 @default.
- W4200320348 creator A5055656539 @default.
- W4200320348 creator A5065761694 @default.
- W4200320348 date "2021-12-09" @default.
- W4200320348 modified "2023-09-23" @default.
- W4200320348 title "Principal Components Analysis of EEG Signals for Epileptic Patient Identification" @default.
- W4200320348 cites W2019550793 @default.
- W4200320348 cites W2055603681 @default.
- W4200320348 cites W2134050473 @default.
- W4200320348 cites W2159023699 @default.
- W4200320348 cites W2345279893 @default.
- W4200320348 cites W2508957211 @default.
- W4200320348 cites W2571022944 @default.
- W4200320348 cites W2774915682 @default.
- W4200320348 cites W2786949033 @default.
- W4200320348 cites W2916188667 @default.
- W4200320348 cites W3172730208 @default.
- W4200320348 cites W3179585071 @default.
- W4200320348 cites W3180057944 @default.
- W4200320348 cites W3183868067 @default.
- W4200320348 cites W3189185512 @default.
- W4200320348 cites W3192349327 @default.
- W4200320348 cites W3212530386 @default.
- W4200320348 cites W3213244760 @default.
- W4200320348 cites W3214137226 @default.
- W4200320348 cites W3216348320 @default.
- W4200320348 cites W4238361226 @default.
- W4200320348 cites W56210758 @default.
- W4200320348 cites W3189152770 @default.
- W4200320348 doi "https://doi.org/10.3390/computation9120133" @default.
- W4200320348 hasPublicationYear "2021" @default.
- W4200320348 type Work @default.
- W4200320348 citedByCount "2" @default.
- W4200320348 countsByYear W42003203482023 @default.
- W4200320348 crossrefType "journal-article" @default.
- W4200320348 hasAuthorship W4200320348A5046917013 @default.
- W4200320348 hasAuthorship W4200320348A5055656539 @default.
- W4200320348 hasAuthorship W4200320348A5065761694 @default.
- W4200320348 hasBestOaLocation W42003203481 @default.
- W4200320348 hasConcept C100660578 @default.
- W4200320348 hasConcept C116834253 @default.
- W4200320348 hasConcept C119857082 @default.
- W4200320348 hasConcept C151956035 @default.
- W4200320348 hasConcept C153180895 @default.
- W4200320348 hasConcept C154945302 @default.
- W4200320348 hasConcept C15744967 @default.
- W4200320348 hasConcept C169760540 @default.
- W4200320348 hasConcept C180747234 @default.
- W4200320348 hasConcept C27438332 @default.
- W4200320348 hasConcept C2778186239 @default.
- W4200320348 hasConcept C41008148 @default.
- W4200320348 hasConcept C522805319 @default.
- W4200320348 hasConcept C59822182 @default.
- W4200320348 hasConcept C81669768 @default.
- W4200320348 hasConcept C86803240 @default.
- W4200320348 hasConceptScore W4200320348C100660578 @default.
- W4200320348 hasConceptScore W4200320348C116834253 @default.
- W4200320348 hasConceptScore W4200320348C119857082 @default.
- W4200320348 hasConceptScore W4200320348C151956035 @default.
- W4200320348 hasConceptScore W4200320348C153180895 @default.
- W4200320348 hasConceptScore W4200320348C154945302 @default.
- W4200320348 hasConceptScore W4200320348C15744967 @default.
- W4200320348 hasConceptScore W4200320348C169760540 @default.
- W4200320348 hasConceptScore W4200320348C180747234 @default.
- W4200320348 hasConceptScore W4200320348C27438332 @default.
- W4200320348 hasConceptScore W4200320348C2778186239 @default.
- W4200320348 hasConceptScore W4200320348C41008148 @default.
- W4200320348 hasConceptScore W4200320348C522805319 @default.
- W4200320348 hasConceptScore W4200320348C59822182 @default.
- W4200320348 hasConceptScore W4200320348C81669768 @default.
- W4200320348 hasConceptScore W4200320348C86803240 @default.
- W4200320348 hasIssue "12" @default.
- W4200320348 hasLocation W42003203481 @default.
- W4200320348 hasOpenAccess W4200320348 @default.
- W4200320348 hasPrimaryLocation W42003203481 @default.
- W4200320348 hasRelatedWork W2085553065 @default.
- W4200320348 hasRelatedWork W2093715904 @default.
- W4200320348 hasRelatedWork W2114966906 @default.
- W4200320348 hasRelatedWork W2380927352 @default.
- W4200320348 hasRelatedWork W2907827771 @default.
- W4200320348 hasRelatedWork W3048981730 @default.
- W4200320348 hasRelatedWork W3178621026 @default.
- W4200320348 hasRelatedWork W4211209597 @default.
- W4200320348 hasRelatedWork W4296705188 @default.
- W4200320348 hasRelatedWork W2137598809 @default.
- W4200320348 hasVolume "9" @default.
- W4200320348 isParatext "false" @default.
- W4200320348 isRetracted "false" @default.
- W4200320348 workType "article" @default.