Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200321698> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4200321698 endingPage "105285" @default.
- W4200321698 startingPage "105285" @default.
- W4200321698 abstract "Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning algorithms widely used in computer vision which can be used to study flood images and assign learnable weights to various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a training database service of >9000 images (image annotation service) including the image geolocation information by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search engines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 (You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package for flood water level estimation and classification. The pipeline is smartly designed to train a large number of images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity, and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to monitor river and road flooding conditions and provide early intelligence to emergency response authorities in real-time." @default.
- W4200321698 created "2021-12-31" @default.
- W4200321698 creator A5004298002 @default.
- W4200321698 creator A5071884087 @default.
- W4200321698 date "2022-02-01" @default.
- W4200321698 modified "2023-10-17" @default.
- W4200321698 title "Application of image processing and convolutional neural networks for flood image classification and semantic segmentation" @default.
- W4200321698 cites W1985284016 @default.
- W4200321698 cites W2039842011 @default.
- W4200321698 cites W2117539524 @default.
- W4200321698 cites W2124386111 @default.
- W4200321698 cites W2145023731 @default.
- W4200321698 cites W2783606427 @default.
- W4200321698 cites W2791697444 @default.
- W4200321698 cites W2805014969 @default.
- W4200321698 cites W2806070179 @default.
- W4200321698 cites W2884367402 @default.
- W4200321698 cites W2902418758 @default.
- W4200321698 cites W2919115771 @default.
- W4200321698 cites W2948451340 @default.
- W4200321698 cites W2997344004 @default.
- W4200321698 cites W3004655700 @default.
- W4200321698 cites W3008125552 @default.
- W4200321698 cites W3021728775 @default.
- W4200321698 cites W3114647493 @default.
- W4200321698 cites W3141126815 @default.
- W4200321698 doi "https://doi.org/10.1016/j.envsoft.2021.105285" @default.
- W4200321698 hasPublicationYear "2022" @default.
- W4200321698 type Work @default.
- W4200321698 citedByCount "19" @default.
- W4200321698 countsByYear W42003216982022 @default.
- W4200321698 countsByYear W42003216982023 @default.
- W4200321698 crossrefType "journal-article" @default.
- W4200321698 hasAuthorship W4200321698A5004298002 @default.
- W4200321698 hasAuthorship W4200321698A5071884087 @default.
- W4200321698 hasBestOaLocation W42003216982 @default.
- W4200321698 hasConcept C108583219 @default.
- W4200321698 hasConcept C124504099 @default.
- W4200321698 hasConcept C136764020 @default.
- W4200321698 hasConcept C154945302 @default.
- W4200321698 hasConcept C166957645 @default.
- W4200321698 hasConcept C205649164 @default.
- W4200321698 hasConcept C22041718 @default.
- W4200321698 hasConcept C2776151529 @default.
- W4200321698 hasConcept C31972630 @default.
- W4200321698 hasConcept C41008148 @default.
- W4200321698 hasConcept C74256435 @default.
- W4200321698 hasConcept C81363708 @default.
- W4200321698 hasConcept C89600930 @default.
- W4200321698 hasConceptScore W4200321698C108583219 @default.
- W4200321698 hasConceptScore W4200321698C124504099 @default.
- W4200321698 hasConceptScore W4200321698C136764020 @default.
- W4200321698 hasConceptScore W4200321698C154945302 @default.
- W4200321698 hasConceptScore W4200321698C166957645 @default.
- W4200321698 hasConceptScore W4200321698C205649164 @default.
- W4200321698 hasConceptScore W4200321698C22041718 @default.
- W4200321698 hasConceptScore W4200321698C2776151529 @default.
- W4200321698 hasConceptScore W4200321698C31972630 @default.
- W4200321698 hasConceptScore W4200321698C41008148 @default.
- W4200321698 hasConceptScore W4200321698C74256435 @default.
- W4200321698 hasConceptScore W4200321698C81363708 @default.
- W4200321698 hasConceptScore W4200321698C89600930 @default.
- W4200321698 hasFunder F4320306076 @default.
- W4200321698 hasFunder F4320309106 @default.
- W4200321698 hasFunder F4320332170 @default.
- W4200321698 hasFunder F4320332183 @default.
- W4200321698 hasLocation W42003216981 @default.
- W4200321698 hasLocation W42003216982 @default.
- W4200321698 hasOpenAccess W4200321698 @default.
- W4200321698 hasPrimaryLocation W42003216981 @default.
- W4200321698 hasRelatedWork W1721780360 @default.
- W4200321698 hasRelatedWork W2004370856 @default.
- W4200321698 hasRelatedWork W2739874619 @default.
- W4200321698 hasRelatedWork W2772397313 @default.
- W4200321698 hasRelatedWork W2795329967 @default.
- W4200321698 hasRelatedWork W3102253946 @default.
- W4200321698 hasRelatedWork W3144574764 @default.
- W4200321698 hasRelatedWork W4226289457 @default.
- W4200321698 hasRelatedWork W4293211451 @default.
- W4200321698 hasRelatedWork W4311401716 @default.
- W4200321698 hasVolume "148" @default.
- W4200321698 isParatext "false" @default.
- W4200321698 isRetracted "false" @default.
- W4200321698 workType "article" @default.