Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200322799> ?p ?o ?g. }
- W4200322799 endingPage "135" @default.
- W4200322799 startingPage "113" @default.
- W4200322799 abstract "Remote sensing image classification is difficult, especially for agricultural crops with identical phenological growth periods. In this context, multi-sensor image fusion allows a comprehensive representation of biophysical and structural information. Recently, Convolutional Neural Network (CNN)-based methods are used for several applications due to their spatial-spectral interpretability. Hence, this study explores the potential of fused multi-temporal Sentinel 1 (S1) and Sentinel 2 (S2) images for Land Use/Land Cover classification over an agricultural area in India. For classification, Bayesian optimised 2D CNN-based DL and pixel-based SVM classifiers were used. For fusion, a CNN-based siamese network with Ratio-of-Laplacian pyramid method was used for the images acquired over the entire winter cropping period. This fusion strategy leads to better interpretability of results and also found that 2D CNN-based DL classifier performed well in terms of classification accuracy for both single-month (95.14% and 96.11%) as well as multi-temporal (99.87% and 99.91%) fusion in comparison to the SVM with classification accuracy for single-month (80.02% and 81.36%) and multi-temporal fusion (95.69% and 95.84%). Results indicate better performance by Vertical-Vertical polarised fused images than Vertical-Horizontal polarised fused images. Thus, implying the need to analyse classified images obtained by DL classifiers along with the classification accuracy." @default.
- W4200322799 created "2021-12-31" @default.
- W4200322799 creator A5023536844 @default.
- W4200322799 creator A5059529431 @default.
- W4200322799 creator A5085702695 @default.
- W4200322799 date "2021-12-22" @default.
- W4200322799 modified "2023-10-16" @default.
- W4200322799 title "Fusion and classification of multi-temporal SAR and optical imagery using convolutional neural network" @default.
- W4200322799 cites W169076094 @default.
- W4200322799 cites W1974307287 @default.
- W4200322799 cites W1976272929 @default.
- W4200322799 cites W1979268221 @default.
- W4200322799 cites W1999316653 @default.
- W4200322799 cites W2001800591 @default.
- W4200322799 cites W2063907334 @default.
- W4200322799 cites W2081921470 @default.
- W4200322799 cites W2112796928 @default.
- W4200322799 cites W2171108951 @default.
- W4200322799 cites W2171211028 @default.
- W4200322799 cites W2303172903 @default.
- W4200322799 cites W2314528731 @default.
- W4200322799 cites W2462592242 @default.
- W4200322799 cites W2497597007 @default.
- W4200322799 cites W2549994478 @default.
- W4200322799 cites W2559870345 @default.
- W4200322799 cites W2565216506 @default.
- W4200322799 cites W2572303978 @default.
- W4200322799 cites W2597898080 @default.
- W4200322799 cites W2744198280 @default.
- W4200322799 cites W2752411461 @default.
- W4200322799 cites W2767166949 @default.
- W4200322799 cites W2772136803 @default.
- W4200322799 cites W2778936354 @default.
- W4200322799 cites W2782522152 @default.
- W4200322799 cites W2804532080 @default.
- W4200322799 cites W2806865914 @default.
- W4200322799 cites W2809795042 @default.
- W4200322799 cites W2896412441 @default.
- W4200322799 cites W2903282641 @default.
- W4200322799 cites W2914661773 @default.
- W4200322799 cites W2940604585 @default.
- W4200322799 cites W2945385604 @default.
- W4200322799 cites W2967822867 @default.
- W4200322799 cites W2973079381 @default.
- W4200322799 cites W2973159718 @default.
- W4200322799 cites W2980376317 @default.
- W4200322799 cites W2999000103 @default.
- W4200322799 cites W3010606970 @default.
- W4200322799 cites W3015075829 @default.
- W4200322799 cites W3020030504 @default.
- W4200322799 cites W3045004532 @default.
- W4200322799 cites W3080107473 @default.
- W4200322799 cites W3087408134 @default.
- W4200322799 cites W3104839310 @default.
- W4200322799 cites W3113839184 @default.
- W4200322799 cites W3118525051 @default.
- W4200322799 cites W3121069613 @default.
- W4200322799 cites W4248614128 @default.
- W4200322799 doi "https://doi.org/10.1080/19479832.2021.2019133" @default.
- W4200322799 hasPublicationYear "2021" @default.
- W4200322799 type Work @default.
- W4200322799 citedByCount "9" @default.
- W4200322799 countsByYear W42003227992022 @default.
- W4200322799 countsByYear W42003227992023 @default.
- W4200322799 crossrefType "journal-article" @default.
- W4200322799 hasAuthorship W4200322799A5023536844 @default.
- W4200322799 hasAuthorship W4200322799A5059529431 @default.
- W4200322799 hasAuthorship W4200322799A5085702695 @default.
- W4200322799 hasConcept C115961682 @default.
- W4200322799 hasConcept C12267149 @default.
- W4200322799 hasConcept C153180895 @default.
- W4200322799 hasConcept C154945302 @default.
- W4200322799 hasConcept C160633673 @default.
- W4200322799 hasConcept C205649164 @default.
- W4200322799 hasConcept C2781067378 @default.
- W4200322799 hasConcept C41008148 @default.
- W4200322799 hasConcept C62649853 @default.
- W4200322799 hasConcept C75294576 @default.
- W4200322799 hasConcept C81363708 @default.
- W4200322799 hasConceptScore W4200322799C115961682 @default.
- W4200322799 hasConceptScore W4200322799C12267149 @default.
- W4200322799 hasConceptScore W4200322799C153180895 @default.
- W4200322799 hasConceptScore W4200322799C154945302 @default.
- W4200322799 hasConceptScore W4200322799C160633673 @default.
- W4200322799 hasConceptScore W4200322799C205649164 @default.
- W4200322799 hasConceptScore W4200322799C2781067378 @default.
- W4200322799 hasConceptScore W4200322799C41008148 @default.
- W4200322799 hasConceptScore W4200322799C62649853 @default.
- W4200322799 hasConceptScore W4200322799C75294576 @default.
- W4200322799 hasConceptScore W4200322799C81363708 @default.
- W4200322799 hasIssue "2" @default.
- W4200322799 hasLocation W42003227991 @default.
- W4200322799 hasOpenAccess W4200322799 @default.
- W4200322799 hasPrimaryLocation W42003227991 @default.
- W4200322799 hasRelatedWork W2025617366 @default.
- W4200322799 hasRelatedWork W2041399278 @default.
- W4200322799 hasRelatedWork W2056016498 @default.
- W4200322799 hasRelatedWork W2120008580 @default.