Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200324181> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4200324181 endingPage "S41" @default.
- W4200324181 startingPage "S41" @default.
- W4200324181 abstract "Abstract Background There are several clinical tools that have been developed to predict the likelihood of extended-spectrum β-lactamase producing Enterobacterales; however, the creation of these tools included few patients with cancer or otherwise immunosuppressed. The objectives of this retrospective cohort study were to develop a decision tree and traditional risk score to predict ceftriaxone resistance in cancer patients with Escherichia coli (E. coli) bacteremia as well as to compare the predictive accuracy between the tools. Methods Adults age ≥ 18 years old with E. coli bacteremia at The University of Texas MD Anderson Cancer Center from 1/2018 to 12/2019 were included. Isolates recovered within 1 week from the same patient were excluded. The decision tree was constructed using classification and regression tree analysis, with a minimum node size of 10. The risk score was created using a multivariable logistic regression model derived by using stepwise variable selection with backward elimination at level 0.2. The decision tree and risk score statistical metrics were compared. Results A total of 629 E. coli isolates were screened, of which 580 isolates met criteria. Ceftriaxone-resistant (CRO-R) E. coli accounted for 36% of isolates. The machine learning-derived decision tree included 5 predictors whereas the logistic regression-derived risk score included 7 predictors. The risk score cutoff point of ≥ 5 points demonstrated the most optimized overall classification accuracy. The positive predictive value of the decision tree was higher than that of the risk score (88% vs 74%, respectively), but the area under the receiver operating characteristic curve and model accuracy of the risk score was higher than that of the decision tree (0.85 vs 0.73 and 82% vs 74%, respectively). Figure 1. Clinical Decision Tree Table 1. Regression Model and Assigned Points for Clinical Risk Score Table 2. Statistical Metrics of Clinical Decision Tree and Clinical Risk Score Conclusion The decision tree and risk score can be used to determine the likelihood of whether a cancer patient with E. coli bacteremia has a CRO-R infection. In both clinical tools, the strongest predictor was a history of CRO-R E. coli colonization or infection in the last 6 months. The decision tree was more user-friendly, has fewer variables, and has a better positive predictive value in comparison to the risk score. However, the risk score has a significantly better discrimination and model accuracy than that of the decision tree. Disclosures Samuel L. Aitken, PharmD, MPH, BCIDP, Melinta Therapeutoics (Individual(s) Involved: Self): Consultant, Grant/Research Support" @default.
- W4200324181 created "2021-12-31" @default.
- W4200324181 creator A5016367589 @default.
- W4200324181 creator A5054693475 @default.
- W4200324181 creator A5080337533 @default.
- W4200324181 creator A5082978424 @default.
- W4200324181 creator A5091663701 @default.
- W4200324181 date "2021-11-01" @default.
- W4200324181 modified "2023-09-28" @default.
- W4200324181 title "60. Creation and Comparison of a Machine Learning Decision Tree and Traditional Risk Score to Predict Ceftriaxone Resistance in Cancer Patients with E. coli Bacteremia" @default.
- W4200324181 doi "https://doi.org/10.1093/ofid/ofab466.060" @default.
- W4200324181 hasPublicationYear "2021" @default.
- W4200324181 type Work @default.
- W4200324181 citedByCount "0" @default.
- W4200324181 crossrefType "journal-article" @default.
- W4200324181 hasAuthorship W4200324181A5016367589 @default.
- W4200324181 hasAuthorship W4200324181A5054693475 @default.
- W4200324181 hasAuthorship W4200324181A5080337533 @default.
- W4200324181 hasAuthorship W4200324181A5082978424 @default.
- W4200324181 hasAuthorship W4200324181A5091663701 @default.
- W4200324181 hasBestOaLocation W42003241811 @default.
- W4200324181 hasConcept C105795698 @default.
- W4200324181 hasConcept C11783203 @default.
- W4200324181 hasConcept C119857082 @default.
- W4200324181 hasConcept C126322002 @default.
- W4200324181 hasConcept C151956035 @default.
- W4200324181 hasConcept C154945302 @default.
- W4200324181 hasConcept C167135981 @default.
- W4200324181 hasConcept C170964787 @default.
- W4200324181 hasConcept C2776520383 @default.
- W4200324181 hasConcept C2779134260 @default.
- W4200324181 hasConcept C2779443120 @default.
- W4200324181 hasConcept C33923547 @default.
- W4200324181 hasConcept C41008148 @default.
- W4200324181 hasConcept C501593827 @default.
- W4200324181 hasConcept C58471807 @default.
- W4200324181 hasConcept C71924100 @default.
- W4200324181 hasConcept C84525736 @default.
- W4200324181 hasConcept C86803240 @default.
- W4200324181 hasConcept C89423630 @default.
- W4200324181 hasConceptScore W4200324181C105795698 @default.
- W4200324181 hasConceptScore W4200324181C11783203 @default.
- W4200324181 hasConceptScore W4200324181C119857082 @default.
- W4200324181 hasConceptScore W4200324181C126322002 @default.
- W4200324181 hasConceptScore W4200324181C151956035 @default.
- W4200324181 hasConceptScore W4200324181C154945302 @default.
- W4200324181 hasConceptScore W4200324181C167135981 @default.
- W4200324181 hasConceptScore W4200324181C170964787 @default.
- W4200324181 hasConceptScore W4200324181C2776520383 @default.
- W4200324181 hasConceptScore W4200324181C2779134260 @default.
- W4200324181 hasConceptScore W4200324181C2779443120 @default.
- W4200324181 hasConceptScore W4200324181C33923547 @default.
- W4200324181 hasConceptScore W4200324181C41008148 @default.
- W4200324181 hasConceptScore W4200324181C501593827 @default.
- W4200324181 hasConceptScore W4200324181C58471807 @default.
- W4200324181 hasConceptScore W4200324181C71924100 @default.
- W4200324181 hasConceptScore W4200324181C84525736 @default.
- W4200324181 hasConceptScore W4200324181C86803240 @default.
- W4200324181 hasConceptScore W4200324181C89423630 @default.
- W4200324181 hasIssue "Supplement_1" @default.
- W4200324181 hasLocation W42003241811 @default.
- W4200324181 hasLocation W42003241812 @default.
- W4200324181 hasOpenAccess W4200324181 @default.
- W4200324181 hasPrimaryLocation W42003241811 @default.
- W4200324181 hasRelatedWork W2066363065 @default.
- W4200324181 hasRelatedWork W2075937340 @default.
- W4200324181 hasRelatedWork W2799952019 @default.
- W4200324181 hasRelatedWork W2994738067 @default.
- W4200324181 hasRelatedWork W3091957231 @default.
- W4200324181 hasRelatedWork W4200324181 @default.
- W4200324181 hasRelatedWork W4220929808 @default.
- W4200324181 hasRelatedWork W4285507452 @default.
- W4200324181 hasRelatedWork W4295067513 @default.
- W4200324181 hasRelatedWork W4312427341 @default.
- W4200324181 hasVolume "8" @default.
- W4200324181 isParatext "false" @default.
- W4200324181 isRetracted "false" @default.
- W4200324181 workType "article" @default.