Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200324400> ?p ?o ?g. }
- W4200324400 endingPage "746" @default.
- W4200324400 startingPage "735" @default.
- W4200324400 abstract "Machine learning applications using neuroimaging provide a multidimensional, data-driven approach that captures the level of complexity necessary for objectively aiding diagnosis and prognosis in psychiatry. However, models learned from small training samples often have limited generalizability, which continues to be a problem with automated diagnosis of mental illnesses such as obsessive-compulsive disorder (OCD). Earlier studies have shown that features incorporating prior neurobiological knowledge of brain function and combining brain parcellations from various sources can potentially improve the overall prediction. However, it is unknown whether such knowledge-driven methods can provide a performance that is comparable to state-of-the-art approaches based on neural networks. In this study, we apply a transparent and explainable multiparcellation ensemble learning framework EMPaSchiz (Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction) to the task of predicting OCD, based on a resting-state functional magnetic resonance imaging dataset of 350 subjects. Furthermore, we apply transfer learning using the features found effective for schizophrenia to OCD to leverage the commonality in brain alterations across these psychiatric diagnoses. We show that our knowledge-based approach leads to a prediction performance of 80.3% accuracy for OCD diagnosis that is better than domain-agnostic and automated feature design using neural networks. Furthermore, we show that a selection of reduced feature sets can be transferred from schizophrenia to the OCD prediction model without significant loss in prediction performance. This study presents a machine learning framework for OCD prediction with neurobiology-aided feature design using resting-state functional magnetic resonance imaging that is generalizable and reasonably interpretable." @default.
- W4200324400 created "2021-12-31" @default.
- W4200324400 creator A5022083407 @default.
- W4200324400 creator A5027200864 @default.
- W4200324400 creator A5047157394 @default.
- W4200324400 creator A5056037052 @default.
- W4200324400 creator A5066560743 @default.
- W4200324400 creator A5067692784 @default.
- W4200324400 creator A5073767924 @default.
- W4200324400 creator A5079355352 @default.
- W4200324400 creator A5080879087 @default.
- W4200324400 creator A5089267199 @default.
- W4200324400 date "2022-07-01" @default.
- W4200324400 modified "2023-10-01" @default.
- W4200324400 title "Prediction of Obsessive-Compulsive Disorder: Importance of Neurobiology-Aided Feature Design and Cross-Diagnosis Transfer Learning" @default.
- W4200324400 cites W1576713367 @default.
- W4200324400 cites W1630817048 @default.
- W4200324400 cites W1987469335 @default.
- W4200324400 cites W2007213925 @default.
- W4200324400 cites W2016444985 @default.
- W4200324400 cites W2023633168 @default.
- W4200324400 cites W2025295645 @default.
- W4200324400 cites W2038523955 @default.
- W4200324400 cites W2058046532 @default.
- W4200324400 cites W2060233596 @default.
- W4200324400 cites W2063404606 @default.
- W4200324400 cites W2064935446 @default.
- W4200324400 cites W2079450984 @default.
- W4200324400 cites W2089572795 @default.
- W4200324400 cites W2093290031 @default.
- W4200324400 cites W2100634972 @default.
- W4200324400 cites W2100861230 @default.
- W4200324400 cites W2103145898 @default.
- W4200324400 cites W2107799479 @default.
- W4200324400 cites W2111531007 @default.
- W4200324400 cites W2116358789 @default.
- W4200324400 cites W2118347738 @default.
- W4200324400 cites W2119195417 @default.
- W4200324400 cites W2123822033 @default.
- W4200324400 cites W2124379907 @default.
- W4200324400 cites W2146347474 @default.
- W4200324400 cites W2154053567 @default.
- W4200324400 cites W2154278233 @default.
- W4200324400 cites W2158282570 @default.
- W4200324400 cites W2159370497 @default.
- W4200324400 cites W2161502085 @default.
- W4200324400 cites W2190763606 @default.
- W4200324400 cites W2268895547 @default.
- W4200324400 cites W2322983841 @default.
- W4200324400 cites W2568132950 @default.
- W4200324400 cites W2597430849 @default.
- W4200324400 cites W2601764499 @default.
- W4200324400 cites W2618995589 @default.
- W4200324400 cites W2625749968 @default.
- W4200324400 cites W2693318660 @default.
- W4200324400 cites W2762517398 @default.
- W4200324400 cites W2775696144 @default.
- W4200324400 cites W2805159053 @default.
- W4200324400 cites W2888505821 @default.
- W4200324400 cites W2897792236 @default.
- W4200324400 cites W2897906330 @default.
- W4200324400 cites W2899955724 @default.
- W4200324400 cites W2901293907 @default.
- W4200324400 cites W2905515056 @default.
- W4200324400 cites W2909079388 @default.
- W4200324400 cites W2910630059 @default.
- W4200324400 cites W2916048747 @default.
- W4200324400 cites W2917871264 @default.
- W4200324400 cites W2927351257 @default.
- W4200324400 cites W2931860752 @default.
- W4200324400 cites W2940179095 @default.
- W4200324400 cites W2947607756 @default.
- W4200324400 cites W2949795054 @default.
- W4200324400 cites W2951373364 @default.
- W4200324400 cites W2953090092 @default.
- W4200324400 cites W2954729672 @default.
- W4200324400 cites W2964266449 @default.
- W4200324400 cites W2967967941 @default.
- W4200324400 cites W2995406462 @default.
- W4200324400 cites W3163762472 @default.
- W4200324400 cites W3208421832 @default.
- W4200324400 cites W4295750005 @default.
- W4200324400 doi "https://doi.org/10.1016/j.bpsc.2021.12.003" @default.
- W4200324400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34929344" @default.
- W4200324400 hasPublicationYear "2022" @default.
- W4200324400 type Work @default.
- W4200324400 citedByCount "5" @default.
- W4200324400 countsByYear W42003244002022 @default.
- W4200324400 countsByYear W42003244002023 @default.
- W4200324400 crossrefType "journal-article" @default.
- W4200324400 hasAuthorship W4200324400A5022083407 @default.
- W4200324400 hasAuthorship W4200324400A5027200864 @default.
- W4200324400 hasAuthorship W4200324400A5047157394 @default.
- W4200324400 hasAuthorship W4200324400A5056037052 @default.
- W4200324400 hasAuthorship W4200324400A5066560743 @default.
- W4200324400 hasAuthorship W4200324400A5067692784 @default.
- W4200324400 hasAuthorship W4200324400A5073767924 @default.
- W4200324400 hasAuthorship W4200324400A5079355352 @default.