Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200325629> ?p ?o ?g. }
- W4200325629 endingPage "80" @default.
- W4200325629 startingPage "80" @default.
- W4200325629 abstract "A simulation model can provide insight into the characteristic behaviors of different health states of an actual system; however, such a simulation cannot account for all complexities in the system. This work proposes a transfer learning strategy that employs simple computer simulations for fault diagnosis in an actual system. A simple shaft-disk system was used to generate a substantial set of source data for three health states of a rotor system, and that data was used to train, validate, and test a customized deep neural network. The deep learning model, pretrained on simulation data, was used as a domain and class invariant generalized feature extractor, and the extracted features were processed with traditional machine learning algorithms. The experimental data sets of an RK4 rotor kit and a machinery fault simulator (MFS) were employed to assess the effectiveness of the proposed approach. The proposed method was also validated by comparing its performance with the pre-existing deep learning models of GoogleNet, VGG16, ResNet18, AlexNet, and SqueezeNet in terms of feature extraction, generalizability, computational cost, and size and parameters of the networks." @default.
- W4200325629 created "2021-12-31" @default.
- W4200325629 creator A5042864072 @default.
- W4200325629 creator A5081927157 @default.
- W4200325629 creator A5083321095 @default.
- W4200325629 date "2021-12-27" @default.
- W4200325629 modified "2023-09-27" @default.
- W4200325629 title "Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer" @default.
- W4200325629 cites W1597576211 @default.
- W4200325629 cites W1965369410 @default.
- W4200325629 cites W1977291557 @default.
- W4200325629 cites W1978284440 @default.
- W4200325629 cites W1990579857 @default.
- W4200325629 cites W2014531733 @default.
- W4200325629 cites W2023825521 @default.
- W4200325629 cites W2024414262 @default.
- W4200325629 cites W2035398862 @default.
- W4200325629 cites W2038845348 @default.
- W4200325629 cites W2067019909 @default.
- W4200325629 cites W2074454118 @default.
- W4200325629 cites W2075587338 @default.
- W4200325629 cites W2080271204 @default.
- W4200325629 cites W2089085200 @default.
- W4200325629 cites W2094605081 @default.
- W4200325629 cites W2105973302 @default.
- W4200325629 cites W2117539524 @default.
- W4200325629 cites W2137044549 @default.
- W4200325629 cites W2150591629 @default.
- W4200325629 cites W2157825442 @default.
- W4200325629 cites W2158958729 @default.
- W4200325629 cites W2165698076 @default.
- W4200325629 cites W2166385084 @default.
- W4200325629 cites W2171913109 @default.
- W4200325629 cites W2229526136 @default.
- W4200325629 cites W2326048563 @default.
- W4200325629 cites W2503906941 @default.
- W4200325629 cites W2566702409 @default.
- W4200325629 cites W2612928659 @default.
- W4200325629 cites W2731372149 @default.
- W4200325629 cites W2736506089 @default.
- W4200325629 cites W2741636173 @default.
- W4200325629 cites W2754767460 @default.
- W4200325629 cites W2765317657 @default.
- W4200325629 cites W2793062918 @default.
- W4200325629 cites W2794284562 @default.
- W4200325629 cites W2886848602 @default.
- W4200325629 cites W2887782657 @default.
- W4200325629 cites W2892137884 @default.
- W4200325629 cites W2896476637 @default.
- W4200325629 cites W2900791983 @default.
- W4200325629 cites W2914417854 @default.
- W4200325629 cites W2915279277 @default.
- W4200325629 cites W2919115771 @default.
- W4200325629 cites W2922660557 @default.
- W4200325629 cites W2945968413 @default.
- W4200325629 cites W2971654674 @default.
- W4200325629 cites W2981982720 @default.
- W4200325629 cites W3009528531 @default.
- W4200325629 cites W3025981493 @default.
- W4200325629 cites W3033043953 @default.
- W4200325629 cites W3048796145 @default.
- W4200325629 cites W3100321043 @default.
- W4200325629 cites W3126272279 @default.
- W4200325629 cites W3127522377 @default.
- W4200325629 cites W3132028723 @default.
- W4200325629 cites W3142026135 @default.
- W4200325629 doi "https://doi.org/10.3390/math10010080" @default.
- W4200325629 hasPublicationYear "2021" @default.
- W4200325629 type Work @default.
- W4200325629 citedByCount "8" @default.
- W4200325629 countsByYear W42003256292022 @default.
- W4200325629 countsByYear W42003256292023 @default.
- W4200325629 crossrefType "journal-article" @default.
- W4200325629 hasAuthorship W4200325629A5042864072 @default.
- W4200325629 hasAuthorship W4200325629A5081927157 @default.
- W4200325629 hasAuthorship W4200325629A5083321095 @default.
- W4200325629 hasBestOaLocation W42003256291 @default.
- W4200325629 hasConcept C105795698 @default.
- W4200325629 hasConcept C108583219 @default.
- W4200325629 hasConcept C117978034 @default.
- W4200325629 hasConcept C119857082 @default.
- W4200325629 hasConcept C124101348 @default.
- W4200325629 hasConcept C127413603 @default.
- W4200325629 hasConcept C150899416 @default.
- W4200325629 hasConcept C153180895 @default.
- W4200325629 hasConcept C154945302 @default.
- W4200325629 hasConcept C16910744 @default.
- W4200325629 hasConcept C199360897 @default.
- W4200325629 hasConcept C21880701 @default.
- W4200325629 hasConcept C27158222 @default.
- W4200325629 hasConcept C33923547 @default.
- W4200325629 hasConcept C41008148 @default.
- W4200325629 hasConcept C50644808 @default.
- W4200325629 hasConcept C52622490 @default.
- W4200325629 hasConceptScore W4200325629C105795698 @default.
- W4200325629 hasConceptScore W4200325629C108583219 @default.
- W4200325629 hasConceptScore W4200325629C117978034 @default.
- W4200325629 hasConceptScore W4200325629C119857082 @default.