Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200329947> ?p ?o ?g. }
- W4200329947 endingPage "3489" @default.
- W4200329947 startingPage "3489" @default.
- W4200329947 abstract "Proper irrigation scheduling and agricultural water management require a precise estimation of crop water requirement. In practice, reference evapotranspiration (ETo) is firstly estimated, and used further to calculate the evapotranspiration of each crop. In this study, two new coupled models were developed for estimating daily ETo. Two optimization algorithms, the shuffled frog-leaping algorithm (SFLA) and invasive weed optimization (IWO), were coupled on an adaptive neuro-fuzzy inference system (ANFIS) to develop and implement the two novel hybrid models (ANFIS-SFLA and ANFIS-IWO). Additionally, four empirical models with varying complexities, including Hargreaves–Samani, Romanenko, Priestley–Taylor, and Valiantzas, were used and compared with the developed hybrid models. The performance of all investigated models was evaluated using the ETo estimates with the FAO-56 recommended method as a benchmark, as well as multiple statistical indicators including root-mean-square error (RMSE), relative RMSE (RRMSE), mean absolute error (MAE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE). All models were tested in Tabriz and Shiraz, Iran as the two studied sites. Evaluation results showed that the developed coupled models yielded better results than the classic ANFIS, with the ANFIS-SFLA outperforming the ANFIS-IWO. Among empirical models, generally the Valiantzas model in its original and calibrated versions presented the best performance. In terms of model complexity (the number of predictors), the model performance was obviously enhanced by an increasing number of predictors. The most accurate estimates of the daily ETo for the study sites were achieved via the hybrid ANFIS-SFLA models using full predictors, with RMSE within 0.15 mm day−1, RRMSE within 4%, MAE within 0.11 mm day−1, and both a high R2 and NSE of 0.99 in the test phase at the two studied sites." @default.
- W4200329947 created "2021-12-31" @default.
- W4200329947 creator A5007558771 @default.
- W4200329947 creator A5039444034 @default.
- W4200329947 creator A5053540902 @default.
- W4200329947 creator A5070918771 @default.
- W4200329947 date "2021-12-07" @default.
- W4200329947 modified "2023-10-14" @default.
- W4200329947 title "Development of Boosted Machine Learning Models for Estimating Daily Reference Evapotranspiration and Comparison with Empirical Approaches" @default.
- W4200329947 cites W1123274752 @default.
- W4200329947 cites W1812453514 @default.
- W4200329947 cites W1843644805 @default.
- W4200329947 cites W1971371955 @default.
- W4200329947 cites W1984974391 @default.
- W4200329947 cites W1996878377 @default.
- W4200329947 cites W2003696872 @default.
- W4200329947 cites W2004280321 @default.
- W4200329947 cites W2010778044 @default.
- W4200329947 cites W2011642135 @default.
- W4200329947 cites W2013038156 @default.
- W4200329947 cites W2019207321 @default.
- W4200329947 cites W2024980804 @default.
- W4200329947 cites W2025148441 @default.
- W4200329947 cites W2038411763 @default.
- W4200329947 cites W2063109543 @default.
- W4200329947 cites W2070427882 @default.
- W4200329947 cites W2073587500 @default.
- W4200329947 cites W2088932912 @default.
- W4200329947 cites W2146492175 @default.
- W4200329947 cites W2171635747 @default.
- W4200329947 cites W2172396214 @default.
- W4200329947 cites W2201197037 @default.
- W4200329947 cites W2290684944 @default.
- W4200329947 cites W2512426578 @default.
- W4200329947 cites W2603417106 @default.
- W4200329947 cites W2757719713 @default.
- W4200329947 cites W2773518495 @default.
- W4200329947 cites W2776334266 @default.
- W4200329947 cites W2791067104 @default.
- W4200329947 cites W2791896807 @default.
- W4200329947 cites W2808724894 @default.
- W4200329947 cites W2901988499 @default.
- W4200329947 cites W2909188960 @default.
- W4200329947 cites W2939529096 @default.
- W4200329947 cites W2957731227 @default.
- W4200329947 cites W3011744717 @default.
- W4200329947 cites W3017885413 @default.
- W4200329947 cites W3081335492 @default.
- W4200329947 cites W3096796110 @default.
- W4200329947 cites W3096916113 @default.
- W4200329947 cites W3098647604 @default.
- W4200329947 cites W3105351184 @default.
- W4200329947 cites W3132114041 @default.
- W4200329947 cites W3140252964 @default.
- W4200329947 cites W3157742619 @default.
- W4200329947 cites W3169921180 @default.
- W4200329947 cites W3169963517 @default.
- W4200329947 cites W3181252537 @default.
- W4200329947 cites W3184814883 @default.
- W4200329947 cites W3192986539 @default.
- W4200329947 cites W3203660323 @default.
- W4200329947 cites W332085899 @default.
- W4200329947 cites W640052560 @default.
- W4200329947 cites W2536295453 @default.
- W4200329947 doi "https://doi.org/10.3390/w13243489" @default.
- W4200329947 hasPublicationYear "2021" @default.
- W4200329947 type Work @default.
- W4200329947 citedByCount "14" @default.
- W4200329947 countsByYear W42003299472021 @default.
- W4200329947 countsByYear W42003299472022 @default.
- W4200329947 countsByYear W42003299472023 @default.
- W4200329947 crossrefType "journal-article" @default.
- W4200329947 hasAuthorship W4200329947A5007558771 @default.
- W4200329947 hasAuthorship W4200329947A5039444034 @default.
- W4200329947 hasAuthorship W4200329947A5053540902 @default.
- W4200329947 hasAuthorship W4200329947A5070918771 @default.
- W4200329947 hasBestOaLocation W42003299471 @default.
- W4200329947 hasConcept C105795698 @default.
- W4200329947 hasConcept C119857082 @default.
- W4200329947 hasConcept C128990827 @default.
- W4200329947 hasConcept C13280743 @default.
- W4200329947 hasConcept C133199616 @default.
- W4200329947 hasConcept C139945424 @default.
- W4200329947 hasConcept C154945302 @default.
- W4200329947 hasConcept C176783924 @default.
- W4200329947 hasConcept C185798385 @default.
- W4200329947 hasConcept C186108316 @default.
- W4200329947 hasConcept C18903297 @default.
- W4200329947 hasConcept C195975749 @default.
- W4200329947 hasConcept C205649164 @default.
- W4200329947 hasConcept C33923547 @default.
- W4200329947 hasConcept C41008148 @default.
- W4200329947 hasConcept C44154836 @default.
- W4200329947 hasConcept C58166 @default.
- W4200329947 hasConcept C86803240 @default.
- W4200329947 hasConceptScore W4200329947C105795698 @default.
- W4200329947 hasConceptScore W4200329947C119857082 @default.
- W4200329947 hasConceptScore W4200329947C128990827 @default.