Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200330396> ?p ?o ?g. }
- W4200330396 endingPage "3" @default.
- W4200330396 startingPage "3" @default.
- W4200330396 abstract "MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in the body and affect various diseases, including cancers. Controlling miRNAs with small molecules is studied herein to provide new drug repurposing perspectives for miRNA-related diseases. Experimental methods are time- and effort-consuming, so computational techniques have been applied, relying mostly on biological feature similarities and a network-based scheme to infer new miRNA-small molecule associations. Collecting such features is time-consuming and may be impractical. Here we suggest an alternative method of similarity calculation, representing miRNAs and small molecules through continuous feature representation. This representation is learned by the proposed deep learning auto-encoder architecture. Our suggested representation was compared to previous works and achieved comparable results using 5-fold cross validation (92% identified within top 25% predictions), and better predictions for most of the case studies (avg. of 31% vs. 25% identified within the top 25% of predictions). The results proved the effectiveness of our proposed method to replace previous time- and effort-consuming methods." @default.
- W4200330396 created "2021-12-31" @default.
- W4200330396 creator A5008953921 @default.
- W4200330396 creator A5031342322 @default.
- W4200330396 creator A5062335941 @default.
- W4200330396 date "2021-12-21" @default.
- W4200330396 modified "2023-10-04" @default.
- W4200330396 title "Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders" @default.
- W4200330396 cites W144423133 @default.
- W4200330396 cites W1889514258 @default.
- W4200330396 cites W1939069213 @default.
- W4200330396 cites W1975441976 @default.
- W4200330396 cites W1979912768 @default.
- W4200330396 cites W1981138861 @default.
- W4200330396 cites W1992852430 @default.
- W4200330396 cites W2008529756 @default.
- W4200330396 cites W2011350824 @default.
- W4200330396 cites W2030817376 @default.
- W4200330396 cites W2047967134 @default.
- W4200330396 cites W2050829849 @default.
- W4200330396 cites W2059819216 @default.
- W4200330396 cites W2064131445 @default.
- W4200330396 cites W2077327925 @default.
- W4200330396 cites W2077576784 @default.
- W4200330396 cites W2077804275 @default.
- W4200330396 cites W2082171629 @default.
- W4200330396 cites W2083381199 @default.
- W4200330396 cites W2086809547 @default.
- W4200330396 cites W2090335107 @default.
- W4200330396 cites W2098318517 @default.
- W4200330396 cites W2104812688 @default.
- W4200330396 cites W2106210472 @default.
- W4200330396 cites W2112385068 @default.
- W4200330396 cites W2124578478 @default.
- W4200330396 cites W2127553917 @default.
- W4200330396 cites W2127586500 @default.
- W4200330396 cites W2128768066 @default.
- W4200330396 cites W2135314242 @default.
- W4200330396 cites W2137052779 @default.
- W4200330396 cites W2138664009 @default.
- W4200330396 cites W2150395782 @default.
- W4200330396 cites W2153210075 @default.
- W4200330396 cites W2163169932 @default.
- W4200330396 cites W2174734928 @default.
- W4200330396 cites W2177627974 @default.
- W4200330396 cites W2318932315 @default.
- W4200330396 cites W2395168605 @default.
- W4200330396 cites W2443187137 @default.
- W4200330396 cites W2518638964 @default.
- W4200330396 cites W2773303607 @default.
- W4200330396 cites W2896829849 @default.
- W4200330396 cites W2896907688 @default.
- W4200330396 cites W2899510892 @default.
- W4200330396 cites W2900090807 @default.
- W4200330396 cites W2903953910 @default.
- W4200330396 cites W2912212024 @default.
- W4200330396 cites W2937307539 @default.
- W4200330396 cites W2945551948 @default.
- W4200330396 cites W2946952196 @default.
- W4200330396 cites W3014640582 @default.
- W4200330396 cites W3025593963 @default.
- W4200330396 cites W3092723008 @default.
- W4200330396 cites W3097145107 @default.
- W4200330396 cites W4238185726 @default.
- W4200330396 cites W4246271082 @default.
- W4200330396 doi "https://doi.org/10.3390/pharmaceutics14010003" @default.
- W4200330396 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35056899" @default.
- W4200330396 hasPublicationYear "2021" @default.
- W4200330396 type Work @default.
- W4200330396 citedByCount "2" @default.
- W4200330396 countsByYear W42003303962022 @default.
- W4200330396 countsByYear W42003303962023 @default.
- W4200330396 crossrefType "journal-article" @default.
- W4200330396 hasAuthorship W4200330396A5008953921 @default.
- W4200330396 hasAuthorship W4200330396A5031342322 @default.
- W4200330396 hasAuthorship W4200330396A5062335941 @default.
- W4200330396 hasBestOaLocation W42003303961 @default.
- W4200330396 hasConcept C103278499 @default.
- W4200330396 hasConcept C103637391 @default.
- W4200330396 hasConcept C104317684 @default.
- W4200330396 hasConcept C105795698 @default.
- W4200330396 hasConcept C111919701 @default.
- W4200330396 hasConcept C115961682 @default.
- W4200330396 hasConcept C116834253 @default.
- W4200330396 hasConcept C118505674 @default.
- W4200330396 hasConcept C138885662 @default.
- W4200330396 hasConcept C145059251 @default.
- W4200330396 hasConcept C153180895 @default.
- W4200330396 hasConcept C154945302 @default.
- W4200330396 hasConcept C17744445 @default.
- W4200330396 hasConcept C179518139 @default.
- W4200330396 hasConcept C199539241 @default.
- W4200330396 hasConcept C2776359362 @default.
- W4200330396 hasConcept C2776401178 @default.
- W4200330396 hasConcept C2780035454 @default.
- W4200330396 hasConcept C33923547 @default.
- W4200330396 hasConcept C41008148 @default.
- W4200330396 hasConcept C41895202 @default.