Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200330825> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4200330825 endingPage "116358" @default.
- W4200330825 startingPage "116358" @default.
- W4200330825 abstract "Inverse halftoning is a technology to restore a continuous-tone image from its halftone version. Recent works based on deep convolutional neural network (DCNN) have shown remarkable progresses in this area. However, it is still a hard work to accurately recover the content information, detail information and global information. To this end, we propose a multistage and multiresolution DCNN method for inverse halftoning. The network includes three sub-networks corresponding three stages, each of them is used to restore different information in a progressive manner. Firstly, a tri-resolution analysis network (TRA) is proposed to remove halftone noise dots and then the initial reconstructed image is obtained. Secondly, the detail information is enriched by the detail enhancement sub-network through concatenating the initial reconstructed image and the input halftone image. Finally, a global enhancement sub-network is introduced to adjust information of the whole image. The evaluation results on three public datasets show that the proposed method is superior to the state-of-the-art methods in both visual quality and numerical evaluation. Moreover, the average runtime of the proposed network is 0.14 s for an image with the size of 256×256 pixels, which means the proposed network can meet the requirements of practical applications." @default.
- W4200330825 created "2021-12-31" @default.
- W4200330825 creator A5050122142 @default.
- W4200330825 creator A5069698190 @default.
- W4200330825 creator A5071149457 @default.
- W4200330825 creator A5084611174 @default.
- W4200330825 date "2022-04-01" @default.
- W4200330825 modified "2023-10-09" @default.
- W4200330825 title "A multistage and multiresolution deep convolutional neural network for inverse halftoning" @default.
- W4200330825 cites W1861492603 @default.
- W4200330825 cites W1992516180 @default.
- W4200330825 cites W2003357647 @default.
- W4200330825 cites W2019088836 @default.
- W4200330825 cites W2035880519 @default.
- W4200330825 cites W2037227137 @default.
- W4200330825 cites W2061505853 @default.
- W4200330825 cites W2069724725 @default.
- W4200330825 cites W2091048677 @default.
- W4200330825 cites W2098890773 @default.
- W4200330825 cites W2104252854 @default.
- W4200330825 cites W2108456392 @default.
- W4200330825 cites W2118162919 @default.
- W4200330825 cites W2133665775 @default.
- W4200330825 cites W2134953536 @default.
- W4200330825 cites W2141936613 @default.
- W4200330825 cites W2148936814 @default.
- W4200330825 cites W2159189149 @default.
- W4200330825 cites W2160598555 @default.
- W4200330825 cites W2162402353 @default.
- W4200330825 cites W2283340597 @default.
- W4200330825 cites W2545300838 @default.
- W4200330825 cites W2738745088 @default.
- W4200330825 cites W2794618433 @default.
- W4200330825 cites W2806833697 @default.
- W4200330825 cites W2901551692 @default.
- W4200330825 cites W2904441248 @default.
- W4200330825 cites W2917263522 @default.
- W4200330825 cites W2921616713 @default.
- W4200330825 cites W2991075450 @default.
- W4200330825 cites W3015803572 @default.
- W4200330825 doi "https://doi.org/10.1016/j.eswa.2021.116358" @default.
- W4200330825 hasPublicationYear "2022" @default.
- W4200330825 type Work @default.
- W4200330825 citedByCount "1" @default.
- W4200330825 countsByYear W42003308252022 @default.
- W4200330825 crossrefType "journal-article" @default.
- W4200330825 hasAuthorship W4200330825A5050122142 @default.
- W4200330825 hasAuthorship W4200330825A5069698190 @default.
- W4200330825 hasAuthorship W4200330825A5071149457 @default.
- W4200330825 hasAuthorship W4200330825A5084611174 @default.
- W4200330825 hasConcept C11413529 @default.
- W4200330825 hasConcept C153180895 @default.
- W4200330825 hasConcept C154945302 @default.
- W4200330825 hasConcept C207467116 @default.
- W4200330825 hasConcept C2524010 @default.
- W4200330825 hasConcept C33923547 @default.
- W4200330825 hasConcept C41008148 @default.
- W4200330825 hasConcept C50644808 @default.
- W4200330825 hasConcept C81363708 @default.
- W4200330825 hasConceptScore W4200330825C11413529 @default.
- W4200330825 hasConceptScore W4200330825C153180895 @default.
- W4200330825 hasConceptScore W4200330825C154945302 @default.
- W4200330825 hasConceptScore W4200330825C207467116 @default.
- W4200330825 hasConceptScore W4200330825C2524010 @default.
- W4200330825 hasConceptScore W4200330825C33923547 @default.
- W4200330825 hasConceptScore W4200330825C41008148 @default.
- W4200330825 hasConceptScore W4200330825C50644808 @default.
- W4200330825 hasConceptScore W4200330825C81363708 @default.
- W4200330825 hasFunder F4320321001 @default.
- W4200330825 hasFunder F4320324173 @default.
- W4200330825 hasLocation W42003308251 @default.
- W4200330825 hasOpenAccess W4200330825 @default.
- W4200330825 hasPrimaryLocation W42003308251 @default.
- W4200330825 hasRelatedWork W2175746458 @default.
- W4200330825 hasRelatedWork W2732542196 @default.
- W4200330825 hasRelatedWork W2738221750 @default.
- W4200330825 hasRelatedWork W2758063741 @default.
- W4200330825 hasRelatedWork W2760085659 @default.
- W4200330825 hasRelatedWork W2883200793 @default.
- W4200330825 hasRelatedWork W2912288872 @default.
- W4200330825 hasRelatedWork W2940661641 @default.
- W4200330825 hasRelatedWork W3012978760 @default.
- W4200330825 hasRelatedWork W3093612317 @default.
- W4200330825 hasVolume "191" @default.
- W4200330825 isParatext "false" @default.
- W4200330825 isRetracted "false" @default.
- W4200330825 workType "article" @default.