Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200331322> ?p ?o ?g. }
- W4200331322 endingPage "112861" @default.
- W4200331322 startingPage "112861" @default.
- W4200331322 abstract "Sediment-laden sea ice is a ubiquitous phenomenon in the Arctic Ocean and its marginal seas. This study presents a satellite-based approach at quantifying the distribution of sediment-laden ice that allows for more extensive observations in both time and space to monitor spatiotemporal variations in sediment-laden ice. A structural-optical model coupled with a four-stream multilayer discrete ordinates method radiative transfer model was used to examine surface spectral albedo for four surface types: clean ice, sediment-laden ice with 15 different sediment loadings from 25 to 1000 g m−3, ponded ice, and ice-free open water. Based on the fact that the spectral characteristics of sediment-laden ice differ from those other surface types, fractions of sediment-laden ice were estimated from the remotely-sensed surface reflectance by a spectral unmixing algorithm using a least square method. Sensitivity analyses demonstrated that a combination of sediment loads of 50 and 500 g m−3 effectively represents the areal fraction of sediment-laden ice with a wide range of sediment loads. The estimated fractions of each surface type and corresponding remotely-sensed surface reflectances were used to train an artificial neural network to speed up processing relative to the least squares method. Comparing the fractions of sediment-laden ice derived from these two approaches yielded good agreements for areal fractions of sediment-laden ice, highlighting the superior performance of the neural network for processing large datasets. Although our approach contains potential uncertainties associated with methodological limitations, spatiotemporal variations in sediment-laden ice exhibited reasonable agreement with spatial patterns and seasonal variations reported in the literature on in situ observations of sediment-laden ice. Systematic satellite-based monitoring of sediment-laden ice distribution can provide extensive, sustained, and cost-effective observations to foster our understanding of the role of sediment-laden ice in a wide variety of research fields including sediment transport and biogeochemical cycling." @default.
- W4200331322 created "2021-12-31" @default.
- W4200331322 creator A5001599490 @default.
- W4200331322 creator A5001759961 @default.
- W4200331322 creator A5007009205 @default.
- W4200331322 creator A5087669604 @default.
- W4200331322 date "2022-03-01" @default.
- W4200331322 modified "2023-10-17" @default.
- W4200331322 title "A neural network-based method for satellite-based mapping of sediment-laden sea ice in the Arctic" @default.
- W4200331322 cites W1498436455 @default.
- W4200331322 cites W1500491746 @default.
- W4200331322 cites W1553038050 @default.
- W4200331322 cites W1967585242 @default.
- W4200331322 cites W1968329070 @default.
- W4200331322 cites W1969080091 @default.
- W4200331322 cites W1971515351 @default.
- W4200331322 cites W1978916549 @default.
- W4200331322 cites W1985167833 @default.
- W4200331322 cites W1985990120 @default.
- W4200331322 cites W1989974710 @default.
- W4200331322 cites W1992604474 @default.
- W4200331322 cites W1997964304 @default.
- W4200331322 cites W2020701258 @default.
- W4200331322 cites W2025166838 @default.
- W4200331322 cites W2025388070 @default.
- W4200331322 cites W2031961239 @default.
- W4200331322 cites W2036467532 @default.
- W4200331322 cites W2046667863 @default.
- W4200331322 cites W2052983809 @default.
- W4200331322 cites W2056438982 @default.
- W4200331322 cites W2063539079 @default.
- W4200331322 cites W2065891477 @default.
- W4200331322 cites W2069556331 @default.
- W4200331322 cites W2079167935 @default.
- W4200331322 cites W2080499991 @default.
- W4200331322 cites W2087337155 @default.
- W4200331322 cites W2089101130 @default.
- W4200331322 cites W2111993850 @default.
- W4200331322 cites W2124987461 @default.
- W4200331322 cites W2126960798 @default.
- W4200331322 cites W2172009270 @default.
- W4200331322 cites W2172047904 @default.
- W4200331322 cites W2320294270 @default.
- W4200331322 cites W2328012364 @default.
- W4200331322 cites W2527011280 @default.
- W4200331322 cites W2581710606 @default.
- W4200331322 cites W2625129035 @default.
- W4200331322 cites W2779948002 @default.
- W4200331322 cites W2789701861 @default.
- W4200331322 cites W2896093403 @default.
- W4200331322 cites W2906006095 @default.
- W4200331322 cites W3008242407 @default.
- W4200331322 cites W3015912686 @default.
- W4200331322 cites W3033120841 @default.
- W4200331322 cites W3036590418 @default.
- W4200331322 cites W3040593397 @default.
- W4200331322 cites W3042098853 @default.
- W4200331322 cites W3049148124 @default.
- W4200331322 cites W3049187555 @default.
- W4200331322 cites W3080911893 @default.
- W4200331322 cites W3081917545 @default.
- W4200331322 cites W3160358317 @default.
- W4200331322 doi "https://doi.org/10.1016/j.rse.2021.112861" @default.
- W4200331322 hasPublicationYear "2022" @default.
- W4200331322 type Work @default.
- W4200331322 citedByCount "6" @default.
- W4200331322 countsByYear W42003313222022 @default.
- W4200331322 countsByYear W42003313222023 @default.
- W4200331322 crossrefType "journal-article" @default.
- W4200331322 hasAuthorship W4200331322A5001599490 @default.
- W4200331322 hasAuthorship W4200331322A5001759961 @default.
- W4200331322 hasAuthorship W4200331322A5007009205 @default.
- W4200331322 hasAuthorship W4200331322A5087669604 @default.
- W4200331322 hasBestOaLocation W42003313221 @default.
- W4200331322 hasConcept C111368507 @default.
- W4200331322 hasConcept C114793014 @default.
- W4200331322 hasConcept C127313418 @default.
- W4200331322 hasConcept C136894858 @default.
- W4200331322 hasConcept C161798024 @default.
- W4200331322 hasConcept C2816523 @default.
- W4200331322 hasConcept C39432304 @default.
- W4200331322 hasConcept C518008717 @default.
- W4200331322 hasConcept C62649853 @default.
- W4200331322 hasConceptScore W4200331322C111368507 @default.
- W4200331322 hasConceptScore W4200331322C114793014 @default.
- W4200331322 hasConceptScore W4200331322C127313418 @default.
- W4200331322 hasConceptScore W4200331322C136894858 @default.
- W4200331322 hasConceptScore W4200331322C161798024 @default.
- W4200331322 hasConceptScore W4200331322C2816523 @default.
- W4200331322 hasConceptScore W4200331322C39432304 @default.
- W4200331322 hasConceptScore W4200331322C518008717 @default.
- W4200331322 hasConceptScore W4200331322C62649853 @default.
- W4200331322 hasFunder F4320306084 @default.
- W4200331322 hasFunder F4320310358 @default.
- W4200331322 hasFunder F4320320212 @default.
- W4200331322 hasFunder F4320320912 @default.
- W4200331322 hasFunder F4320327149 @default.
- W4200331322 hasFunder F4320332359 @default.