Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200332237> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4200332237 abstract "PreviousNext No AccessSixth International Conference on Engineering Geophysics, Virtual, 25–28 October 2021Deep void detection with 3D seismic waveform tomographyAuthors: Majid MirzanejadKhiem T. TranMichael McVayDavid HorhotaScott J. WasmanMajid MirzanejadUniversity of FloridaSearch for more papers by this author, Khiem T. TranUniversity of FloridaSearch for more papers by this author, Michael McVayUniversity of FloridaSearch for more papers by this author, David HorhotaFlorida Department of TransportationSearch for more papers by this author, and Scott J. WasmanUniversity of FloridaSearch for more papers by this authorhttps://doi.org/10.1190/iceg2021-066.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract Detection of subsurface voids using nondestructive seismic methods is an ongoing problem in many areas of civil and environmental engineering (e.g., sinkholes and caves), homeland security (e.g., tunnel detection), and mining applications (e.g., abandoned mines). Recent advances in 3D full waveform inversion (FWI) technology have made it possible to scan large volumes of the underlying materials efficiently, providing a glimpse in to the state of subsurface conditions. A challenge in applying 3D FWI methods to the detection of voids emerges from their embedment depths. Shallower voids are easier to detect due to their large signature on the surface seismic response, whereas deeper voids have a much smaller signature and are therefore much harder to detect. The goal of this study is to investigate ways to overcome these limitations and improve void detection depths. One way to achieve this is thro ugh the application of a large surface source, generating more energy at lower frequencies (longer wavelengths), thereby increasing the penetration depth. Another way is by increasing the contribution of body waves and utilizing the diffraction/transmission information embedded in the waveforms. The latter is achieved through the application of a recently developed SPT-seismic method, where the standard penetration test (SPT) device is used to generate wave motion from within the subsurface. Both source methods and a newly developed 3D Gauss-Newton FWI method are utilized here to detect a deep void (25-45 m depth) in limestone, on the southern peninsula of Florida. The results are compared with SPT and borehole sonar profiles obtained from the test site. Overall, a good image of the deep void is achieved, matching observations from the invasive results. The findings provide useful insight into the application of FWI technology for detecting deep subsurface voids and anomalies that are typically hard to identify. Keywords: wave propagation, diffraction, transmission, full-waveform inversion, geophonesPermalink: https://doi.org/10.1190/iceg2021-066.1FiguresReferencesRelatedDetails Sixth International Conference on Engineering Geophysics, Virtual, 25–28 October 2021ISSN (online):2159-6832Copyright: 2021 Pages: 341 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 24 Dec 2021 CITATION INFORMATION Majid Mirzanejad, Khiem T. Tran, Michael McVay, David Horhota, and Scott J. Wasman, (2021), Deep void detection with 3D seismic waveform tomography, SEG Global Meeting Abstracts : 256-260. https://doi.org/10.1190/iceg2021-066.1 Plain-Language Summary Keywordswave propagationdiffractiontransmissionfull-waveform inversiongeophonesPDF DownloadLoading ..." @default.
- W4200332237 created "2021-12-31" @default.
- W4200332237 creator A5023931187 @default.
- W4200332237 creator A5053320413 @default.
- W4200332237 creator A5064367386 @default.
- W4200332237 creator A5065599374 @default.
- W4200332237 creator A5083680559 @default.
- W4200332237 date "2021-12-24" @default.
- W4200332237 modified "2023-10-16" @default.
- W4200332237 title "Deep void detection with 3D seismic waveform tomography" @default.
- W4200332237 cites W2077011898 @default.
- W4200332237 cites W2777706608 @default.
- W4200332237 cites W2806840676 @default.
- W4200332237 cites W2898129775 @default.
- W4200332237 cites W2909179980 @default.
- W4200332237 cites W3026985837 @default.
- W4200332237 cites W3098231015 @default.
- W4200332237 cites W3140225371 @default.
- W4200332237 cites W4230667613 @default.
- W4200332237 doi "https://doi.org/10.1190/iceg2021-066.1" @default.
- W4200332237 hasPublicationYear "2021" @default.
- W4200332237 type Work @default.
- W4200332237 citedByCount "0" @default.
- W4200332237 crossrefType "proceedings-article" @default.
- W4200332237 hasAuthorship W4200332237A5023931187 @default.
- W4200332237 hasAuthorship W4200332237A5053320413 @default.
- W4200332237 hasAuthorship W4200332237A5064367386 @default.
- W4200332237 hasAuthorship W4200332237A5065599374 @default.
- W4200332237 hasAuthorship W4200332237A5083680559 @default.
- W4200332237 hasConcept C111472728 @default.
- W4200332237 hasConcept C127313418 @default.
- W4200332237 hasConcept C138885662 @default.
- W4200332237 hasConcept C159985019 @default.
- W4200332237 hasConcept C165205528 @default.
- W4200332237 hasConcept C192562407 @default.
- W4200332237 hasConcept C2778726998 @default.
- W4200332237 hasConcept C2779772531 @default.
- W4200332237 hasConcept C41008148 @default.
- W4200332237 hasConcept C8058405 @default.
- W4200332237 hasConceptScore W4200332237C111472728 @default.
- W4200332237 hasConceptScore W4200332237C127313418 @default.
- W4200332237 hasConceptScore W4200332237C138885662 @default.
- W4200332237 hasConceptScore W4200332237C159985019 @default.
- W4200332237 hasConceptScore W4200332237C165205528 @default.
- W4200332237 hasConceptScore W4200332237C192562407 @default.
- W4200332237 hasConceptScore W4200332237C2778726998 @default.
- W4200332237 hasConceptScore W4200332237C2779772531 @default.
- W4200332237 hasConceptScore W4200332237C41008148 @default.
- W4200332237 hasConceptScore W4200332237C8058405 @default.
- W4200332237 hasLocation W42003322371 @default.
- W4200332237 hasOpenAccess W4200332237 @default.
- W4200332237 hasPrimaryLocation W42003322371 @default.
- W4200332237 hasRelatedWork W1968702681 @default.
- W4200332237 hasRelatedWork W2022035173 @default.
- W4200332237 hasRelatedWork W2031573214 @default.
- W4200332237 hasRelatedWork W2371527909 @default.
- W4200332237 hasRelatedWork W2772196783 @default.
- W4200332237 hasRelatedWork W2793870849 @default.
- W4200332237 hasRelatedWork W3036915269 @default.
- W4200332237 hasRelatedWork W3109652668 @default.
- W4200332237 hasRelatedWork W3113596969 @default.
- W4200332237 hasRelatedWork W4254610537 @default.
- W4200332237 isParatext "false" @default.
- W4200332237 isRetracted "false" @default.
- W4200332237 workType "article" @default.