Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200334578> ?p ?o ?g. }
- W4200334578 endingPage "575" @default.
- W4200334578 startingPage "559" @default.
- W4200334578 abstract "To determine the effects of using unstructured clinical text in machine learning (ML) for prediction, early detection, and identification of sepsis.PubMed, Scopus, ACM DL, dblp, and IEEE Xplore databases were searched. Articles utilizing clinical text for ML or natural language processing (NLP) to detect, identify, recognize, diagnose, or predict the onset, development, progress, or prognosis of systemic inflammatory response syndrome, sepsis, severe sepsis, or septic shock were included. Sepsis definition, dataset, types of data, ML models, NLP techniques, and evaluation metrics were extracted.The clinical text used in models include narrative notes written by nurses, physicians, and specialists in varying situations. This is often combined with common structured data such as demographics, vital signs, laboratory data, and medications. Area under the receiver operating characteristic curve (AUC) comparison of ML methods showed that utilizing both text and structured data predicts sepsis earlier and more accurately than structured data alone. No meta-analysis was performed because of incomparable measurements among the 9 included studies.Studies focused on sepsis identification or early detection before onset; no studies used patient histories beyond the current episode of care to predict sepsis. Sepsis definition affects reporting methods, outcomes, and results. Many methods rely on continuous vital sign measurements in intensive care, making them not easily transferable to general ward units.Approaches were heterogeneous, but studies showed that utilizing both unstructured text and structured data in ML can improve identification and early detection of sepsis." @default.
- W4200334578 created "2021-12-31" @default.
- W4200334578 creator A5006178262 @default.
- W4200334578 creator A5022242950 @default.
- W4200334578 creator A5044150479 @default.
- W4200334578 date "2021-12-13" @default.
- W4200334578 modified "2023-10-16" @default.
- W4200334578 title "Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review" @default.
- W4200334578 cites W1498436455 @default.
- W4200334578 cites W1560862568 @default.
- W4200334578 cites W174904603 @default.
- W4200334578 cites W1759667598 @default.
- W4200334578 cites W1898928487 @default.
- W4200334578 cites W1943063538 @default.
- W4200334578 cites W1965521734 @default.
- W4200334578 cites W1970007934 @default.
- W4200334578 cites W1973926855 @default.
- W4200334578 cites W1977823755 @default.
- W4200334578 cites W1993397663 @default.
- W4200334578 cites W1994373518 @default.
- W4200334578 cites W2002730524 @default.
- W4200334578 cites W2009328436 @default.
- W4200334578 cites W2009790391 @default.
- W4200334578 cites W2012688710 @default.
- W4200334578 cites W2021967857 @default.
- W4200334578 cites W204550682 @default.
- W4200334578 cites W2046788142 @default.
- W4200334578 cites W2047452505 @default.
- W4200334578 cites W2048215310 @default.
- W4200334578 cites W2049927822 @default.
- W4200334578 cites W2050948290 @default.
- W4200334578 cites W2051743300 @default.
- W4200334578 cites W2058563257 @default.
- W4200334578 cites W2064675550 @default.
- W4200334578 cites W2070493638 @default.
- W4200334578 cites W2078116468 @default.
- W4200334578 cites W2084095073 @default.
- W4200334578 cites W2085452577 @default.
- W4200334578 cites W2091822944 @default.
- W4200334578 cites W2093889817 @default.
- W4200334578 cites W2109056977 @default.
- W4200334578 cites W2110182515 @default.
- W4200334578 cites W2120757740 @default.
- W4200334578 cites W2125160639 @default.
- W4200334578 cites W2136486905 @default.
- W4200334578 cites W2138391754 @default.
- W4200334578 cites W2139920660 @default.
- W4200334578 cites W2142093121 @default.
- W4200334578 cites W2142735182 @default.
- W4200334578 cites W2144589352 @default.
- W4200334578 cites W2154048976 @default.
- W4200334578 cites W2156098321 @default.
- W4200334578 cites W2160691650 @default.
- W4200334578 cites W2169167455 @default.
- W4200334578 cites W2181632195 @default.
- W4200334578 cites W2184273301 @default.
- W4200334578 cites W2228821715 @default.
- W4200334578 cites W2280404143 @default.
- W4200334578 cites W2282181907 @default.
- W4200334578 cites W2283041611 @default.
- W4200334578 cites W2302502576 @default.
- W4200334578 cites W2333831866 @default.
- W4200334578 cites W2337688125 @default.
- W4200334578 cites W2396881363 @default.
- W4200334578 cites W2398222323 @default.
- W4200334578 cites W2413217666 @default.
- W4200334578 cites W246286872 @default.
- W4200334578 cites W2465673526 @default.
- W4200334578 cites W2480764494 @default.
- W4200334578 cites W2519501974 @default.
- W4200334578 cites W2536855816 @default.
- W4200334578 cites W2537621452 @default.
- W4200334578 cites W2540365220 @default.
- W4200334578 cites W2577646479 @default.
- W4200334578 cites W2581605534 @default.
- W4200334578 cites W2588186302 @default.
- W4200334578 cites W2603563460 @default.
- W4200334578 cites W2604825012 @default.
- W4200334578 cites W2604972438 @default.
- W4200334578 cites W271409215 @default.
- W4200334578 cites W2735580341 @default.
- W4200334578 cites W2755626276 @default.
- W4200334578 cites W2768146862 @default.
- W4200334578 cites W2768488789 @default.
- W4200334578 cites W2769647849 @default.
- W4200334578 cites W2770445088 @default.
- W4200334578 cites W2785987933 @default.
- W4200334578 cites W2800017769 @default.
- W4200334578 cites W2800208248 @default.
- W4200334578 cites W2804610868 @default.
- W4200334578 cites W2882319491 @default.
- W4200334578 cites W2888775708 @default.
- W4200334578 cites W2891337524 @default.
- W4200334578 cites W2905983446 @default.
- W4200334578 cites W2910910290 @default.
- W4200334578 cites W2911964244 @default.
- W4200334578 cites W2912971066 @default.
- W4200334578 cites W2930139824 @default.